Skip to main content
Log in

Effect of tropical cyclone intensity and instability on the evolution of spiral bands

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The evolution of spiral-band-like structures triggered by asymmetric heating in three tropical-cyclone-like vortices of different intensities is examined using the Three-Dimensional Vortex Perturbation Analyzer and Simulator (3DVPAS) model. To simulate the spiral bands, asymmetric thermal perturbations are imposed on the radius of maximum wind (RMW) of vortices, which can be considered as the location near the eyewall of real tropical cyclones (TCs).

All the three vortices experience a hydrostatic adjustment after the introduction of thermal asymmetries. It takes more time for weaker and stable vortices to finish such a process. The spiral-band-like structures, especially those distant from the vortex centers, form and evolve accompanying this process. In the quasi-balance state, the spiral bands are gradually concentrated to the inner core, the wave behavior of which resembles the features of classic vortex Rossby (VR) waves.

The unstable vortices regain nonhydrostatic features after the quasi-balance stage. The spiral bands further from the vortex center, similar to distant spiral bands in real TCs, form and maintain more easily in the moderate basic-state vortex, satisfying the conditions of barotropic instability. The widest radial extent and longest-lived distant bands always exist in weak and stable vortices.

This study represents an attempt to determine the role of TC intensity and stability in the formation and evolution of spiral bands via hydrostatic balance adjustment, and provides some valuable insights into the formation of distant spiral rainbands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carr, L. E. III, and R. T. Williams, 1989: Barotropic vortex stability to perturbations from axisymmetry. J. Atmos. Sci., 46, 3177–3191.

    Article  Google Scholar 

  • Chen, X. J., H. Huang, Z. Y. Chen, and X. Z. Wang, 2010: A numerical simulation study on Typhoon Manyi spiral bands. Meteorology and Disaster Reduction Research, 33, 9–15. (in Chinese with English abstract)

    Google Scholar 

  • Chen, Y. S., and M. K. Yau, 2001: Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. J. Atmos. Sci., 58, 2128–2145.

    Article  Google Scholar 

  • Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 1550–1561.

    Article  Google Scholar 

  • Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420–430.

    Article  Google Scholar 

  • Franklin, C. N., G. J. Holland, and P. T. May, 2006: Mechanisms for the generation of mesoscale vorticity features in tropical cyclone rainbands. Mon. Wea. Rev., 134, 2649–2669.

    Article  Google Scholar 

  • Guinn, T. A., and W. H. Schubert, 1993: Hurricane spiral bands. J. Atmos. Sci., 50, 3380–3403.

    Article  Google Scholar 

  • Hodyss, D., and D. S. Nolan, 2007: Linear anelastic equations for atmospheric vortices. J. Atmos. Sci., 64, 2947–2959.

    Article  Google Scholar 

  • Hodyss, D., and D. S. Nolan, 2008: The Rossby-inertia-buoyancy instability in baroclinic vortices. Phys. Fluids, 20, 096 602–096 621.

    Article  Google Scholar 

  • Houze, R. A, Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293–344.

    Article  Google Scholar 

  • Kimball, S. K., 2006: A modeling study of hurricane landfall in a dry environment. Mon. Wea. Rev., 134, 1901–1918.

    Article  Google Scholar 

  • Li, Q. Q., and Y. Q. Wang, 2012: A comparison of inner and outer spiral rainbands in a numerically simulated tropical cyclone. Mon. Wea. Rev., 140, 2782–2805.

    Article  Google Scholar 

  • Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465.

    Article  Google Scholar 

  • Moon, Y., and D. S. Nolan, 2010: The dynamic response of the hurricane wind field to spiral rainband heating. J. Atmos. Sci., 67, 1779–1805.

    Article  Google Scholar 

  • Nolan, D. S., and M. T. Montgomery, 2000: The algebraic growth of wavenumber one disturbances in hurricane-like vortices. J. Atmos. Sci., 57, 3514–3538.

    Article  Google Scholar 

  • Nolan, D. S., and M. T. Montgomery, 2002: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part I: Linearized formulation, stability, and evolution. J. Atmos. Sci., 59, 2989–3020.

    Google Scholar 

  • Nolan, D. S., and L. D. Grasso, 2003: Nonhydrostatic, threedimensional perturbations to balanced, hurricane-like vortices. Part II: Symmetric response and nonlinear simulations. J. Atmos. Sci., 60, 2717–2745.

    Article  Google Scholar 

  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 3377–3405.

    Article  Google Scholar 

  • Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasisteady forcing. Mon. Wea. Rev., 137, 805–821.

    Article  Google Scholar 

  • Senn, H. V., H. W. Hiser, 1959: On the origin of hurricane spiral rain bands. J. Meteor., 16, 419–426.

    Article  Google Scholar 

  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 1197–1223.

    Article  Google Scholar 

  • Shapiro, L. J., 1996: The motion of hurricane Gloria: A potential vorticity diagnosis. Mon. Wea. Rev., 124, 2497–2508.

    Article  Google Scholar 

  • Smith, G. B. II, and M. T. Montgomery, 1995: Vortex axisymmetrization: Dependence on azimuthal wave-number or asymmetric radial structure changes. Quart. J. Roy. Meteor. Soc., 121, 1615–1650.

    Article  Google Scholar 

  • Wang, Y. Q., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity?. J. Atmos. Sci., 66, 1250–1273.

    Article  Google Scholar 

  • Wang, Y. Q., and J. Xu, 2010: Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67, 97–116.

    Article  Google Scholar 

  • Willoughby, H. E., 1988: The dynamics of the tropical hurricane core. Aust. Meteor. Mag., 36, 183–191.

    Google Scholar 

  • Willoughby, H. E., R. W. R. Darling, and M. E. Rahn, 2006: Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Wea. Rev., 134, 1102–1120.

    Article  Google Scholar 

  • Xu, J., and Y. Q. Wang, 2010a: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 1831–1852.

    Article  Google Scholar 

  • Xu, J., and Y. Q. Wang, 2010b: Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon. Wea. Rev., 138, 4135–4157.

    Article  Google Scholar 

  • Ye, D. Z., and M. C. Li, 1965: Adjustment Issues of Atmosphere Motion. Science Press, Beijing, 126 pp. (in Chinese)

    Google Scholar 

  • Zhang, M., H. Huang, and L. F. Zhang, 2010: Atmospheric wave spectrum analysis and instability. 3rd ed., Perturbations in Tropical Cyclone, China Meteorological Press, Beijing, 238 pp. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Jiang, Y., Chen, Z. et al. Effect of tropical cyclone intensity and instability on the evolution of spiral bands. Adv. Atmos. Sci. 31, 1090–1100 (2014). https://doi.org/10.1007/s00376-014-3108-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-014-3108-5

Key words

Navigation