Skip to main content
Log in

Steric sea level change in twentieth century historical climate simulation and IPCC-RCP8.5 scenario projection: A comparison of two versions of FGOALS model

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

To reveal the steric sea level change in 20th century historical climate simulations and future climate change projections under the IPCC’s Representative Concentration Pathway 8.5 (RCP8.5) scenario, the results of two versions of LASG/IAP’s Flexible Global Ocean-Atmosphere-Land System model (FGOALS) are analyzed. Both models reasonably reproduce the mean dynamic sea level features, with a spatial pattern correlation coefficient of 0.97 with the observation. Characteristics of steric sea level changes in the 20th century historical climate simulations and RCP8.5 scenario projections are investigated. The results show that, in the 20th century, negative trends covered most parts of the global ocean. Under the RCP8.5 scenario, global-averaged steric sea level exhibits a pronounced rising trend throughout the 21st century and the general rising trend appears in most parts of the global ocean. The magnitude of the changes in the 21st century is much larger than that in the 20th century. By the year 2100, the global-averaged steric sea level anomaly is 18 cm and 10 cm relative to the year 1850 in the second spectral version of FGOALS (FGOALS-s2) and the second grid-point version of FGOALS (FGOALS-g2), respectively. The separate contribution of the thermosteric and halosteric components from various ocean layers is further evaluated. In the 20th century, the steric sea level changes in FGOALS-s2 (FGOALS-g2) are largely attributed to the thermosteric (halosteric) component relative to the pre-industrial control run. In contrast, in the 21st century, the thermosteric component, mainly from the upper 1000 m, dominates the steric sea level change in both models under the RCP8.5 scenario. In addition, the steric sea level change in the marginal sea of China is attributed to the thermosteric component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonov, J. I., S. Levitus, and T. P. Boyer, 2002: Steric sea level variations during 1957–1994: Importance of salinity. J. Geophys. Res., 107, 8031, doi: 10.1029/2001JC000964.

    Article  Google Scholar 

  • Antonov, J. I., S. Levitus, and T. P. Boyer, 2005: Thermosteric sea level rise, 1955–2003. Geophys. Res. Lett., 32, L12602, doi: 10.1029/2005GL023112.

    Article  Google Scholar 

  • Bao, Q., and Coauthors, 2013: The Flexible Global Ocean-Atmosphere-Land System model Version 2: FGOALS-s2. Adv. Atmos. Sci., doi: 10.1007/s00376-012-2113-9.

    Google Scholar 

  • Barnett, T. P., 1988: Global Sea Level change. Climate variations over the past century and the greenhouse effect: A report based on the first climate trends workshop, Washington D. C., National Climate Program Office/NOAA, Rockville, Maryland, 7–9.

    Google Scholar 

  • Boussinesq, J., 1903: Theorie Aanalyque de la Chaleur. Paris, Gathier-Villars, 2, 172. (in French)

    Google Scholar 

  • Bryan, K., 1996: The steric component of sea level rise associated with enhanced greenhouse warming: A model study. Climate Dyn., 12, 545–555.

    Article  Google Scholar 

  • Cazenave, A., and R. S. Nerem, 2004: Present-day sea level change: Observations and causes. Rev. Geophys., 42, RG3001, doi: 10.1029/2003RG000139.

    Article  Google Scholar 

  • Cazenave, A., K. DoMinh, S. Guinehut, E. Berthier, W. Llovel, G. Ramillien, M. Ablain, and G. Larnicol, 2009: Sea level budget over 2003–2008: A reevaluation from GRACE space gravimetry, satellite altimetry and ARGO. Global and Planetary Change, 65, 83–88.

    Article  Google Scholar 

  • Church, J. A., J. S. Godfrey, D. R. Jackett, and T. J. Mcdougall, 1991: A model of sea level rise caused by ocean thermal expansion. J. Climate, 4, 438–456.

    Article  Google Scholar 

  • Church, J. A., and Coauthors, 2011: Revisiting the earth sea level and energy budgets from 1961 to 2008. Geophys. Res. Lett., 38, L18601, doi: 10.1029/2011GL048794.

    Article  Google Scholar 

  • Dobrovolski, S. G., 2000: Stochastic Climate Theory. Springer Verlag, Berlin, 282pp.

    Google Scholar 

  • Fairbridge, R. W., and O. A. Krebs, 1962: Sea Level and the Southern Oscillation. Geophysical Journal of the Royal Astronomical Society, 6, 532–545.

    Article  Google Scholar 

  • Gill, A. E., 1982: Atmosphere-ocean dynamics. International Geophysics Series. Academic Press, 662pp.

    Google Scholar 

  • Gornitz, V., and S. Lebedeff, 1987: Global sea level changes during the past century. Sea Level Fluctuation and Coastal Evolution, D. Nummedal, O. H. Pilkey and J. D. Howard, Eds., Society for Economic Paleontologists and Mineralogists, 3–16 (SEPM Special Publication No. 41).

    Chapter  Google Scholar 

  • Gornitz, V., S. Lebedeff, and J. Hansen, 1982: Global sea level trends in the past century. Science, 215, 1611–1614.

    Article  Google Scholar 

  • Greatbatch, R. J., 1994: A note on the representation of steric sea level in models that conserve volume rather than mass. J. Geophys. Res., 99(C6), 12767–12771.

    Article  Google Scholar 

  • Gregory, J. M., and Coauthors, 2001: Comparison of re sults from several AOGCMs for global and regional sea-level change 1900–2100. Climate Dyn., 18, 225–240.

    Article  Google Scholar 

  • Häkkinen, S., 2001: Variability in sea surface height: A qualitative measure for the meridional overturning in the North Atlantic. J. Geophys. Res., 106, 13837–13848.

    Article  Google Scholar 

  • IPCC, 2007: Summary for policymakers. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 408–417.

    Google Scholar 

  • Ishii, M., M. Kimoto, K. Sakamoto, and S. I. Iwasaki, 2006: Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. Journal of Oceanography, 62(2), 155–170.

    Article  Google Scholar 

  • Klige, R. K., 1982: Oceanic level fluctuations in the history of the earth. Sea and Oceanic Level Fluctuations for 15,000 Years, Acad. Sc. U. S. S. R., Institute of Geography, Moscow, Nauka, 1–22. (in Russian)

    Google Scholar 

  • Knutti, R., and T. F. Stocker, 2000: Influence of the thermohaline circulation on projected sea level rise. J. Climate, 13, 1997–2001.

    Article  Google Scholar 

  • Landerer, F. W., J. H. Jungclaus, and J. Marotzke, 2007: Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J. Phys. Oceanogr., 37, 296–312.

    Article  Google Scholar 

  • Levermann, A., A. Griesel, M. Hoffmann, M. Montoya, and S. Rahmstorf, 2005: Dynamic sea level changes following changes in the thermohaline circulation. Climate Dyn., 24, 347–354.

    Article  Google Scholar 

  • Li, L. J., and Coauthors, 2013: The Flexible Global Ocean-Atmosphere-Land System Model: Grid-point Version 2: FGOALS-g2. Adv. Atmos. Sci., doi: 10.1007/s00376-012-2140-6.

    Google Scholar 

  • Li, W,, X. H. Zhang, and X. Z. Jin, 2003: Sea level height on different approximations assumptions in ocean circulation models. Advances in Marine Science, 21(2), 132–141. (in Chinese)

    Google Scholar 

  • Liu, H. L., Y. Yu, W. Li, and X. Zhang, 2004: Reference Manual of LASG/IAP Climate System Ocean Model (LICOM1.0). Special technical report of State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics. Science Press, Beijing, 107pp. (in Chinese)

    Google Scholar 

  • Maximenko, N., P. Niiler, M.-H. Rio, O. Melnichenko, L. Centurioni, D. Chambers, V. Zlotnicki, and B. Galperin, 2009: Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J. Atmos. Oceanic Technol., 26(9), 1910–1919.

    Article  Google Scholar 

  • Mikolajewicz, U., and R. Voss, 2000: The role of the individual air-sea flux components in the CO2-induced changes of the ocean’s circulation and climate. Climate Dyn., 16, 627–642.

    Article  Google Scholar 

  • Mikolajewicz, U., B. D. Santer, and E. Maier-Reimer, 1990: Ocean response to greenhouse warming. Nature, 345, 589–593.

    Article  Google Scholar 

  • Munk, W., 2002: Twentieth century sea level: An enigma. Proc. Natl. Acad. Sci., USA, 99, 6550–6555.

    Article  Google Scholar 

  • Pattullo, J., W. Munk, R. Revelle, and E. Strong, 1955: The seasonal oscillation in sea level. J. Mar. Res., 14(1), 88–156.

    Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Ameri. Meteor. Soc., 485-498.

  • Wu, T., J. C. Kang, F. Wang, and Y. M. Zheng, 2006: The new progresses on global sea level change. Advances in Earth Science, 21(7), 730–737.

    Google Scholar 

  • Yin, J., S. M Griffies, and R. Stouffer, 2010: Spatial variability of sea-level rise in 21st century projections. J. Climate, 23, 4585–4607.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianjun Zhou  (周天军).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, L., Zhou, T. Steric sea level change in twentieth century historical climate simulation and IPCC-RCP8.5 scenario projection: A comparison of two versions of FGOALS model. Adv. Atmos. Sci. 30, 841–854 (2013). https://doi.org/10.1007/s00376-012-2224-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-012-2224-3

Key words

Navigation