Skip to main content
Log in

Simulation of the westerly jet axis in boreal winter by the climate system model FGOALS-g2

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The major features of the westerly jets in boreal winter, consisting of the Middle East jet stream (MEJS), East Asian jet stream (EAJS) and North Atlantic jet stream (NAJS), simulated by a newly developed climate system model, were evaluated with an emphasis on the meridional location of the westerly jet axis (WJA). The model was found to exhibit fairly good performance in simulating the EAJS and NAJS, whereas the MEJS was much weaker and indistinguishable in the model. Compared with the intensity bias, the southward shift of the WJA seems to be a more remarkable deficiency. From the perspective of Ertel potential vorticity, the profiles along different westerly jet cores in the model were similar with those in the reanalysis but all shifted southward, indicating an equatorward displacement of the dynamic tropopause and associated climatology. Diagnosis of the thermodynamic equation revealed that the model produced an overall stronger heating source and the streamfunction quantifying the convection and overturning Hadley circulation shifted southward significantly in the middle and upper troposphere. The two maximum centers of eddy kinetic energy, corresponding to the EAJS and NAJS, were reproduced, whereas they all shifted southwards with a much reduced intensity. A lack of transient eddy activity will reduce the efficiency of poleward heat transport, which may partially contribute to the meridionally non-uniform cooling in the middle and upper troposphere. As the WJA is closely related to the location of the Hadley cell, tropopause and transient eddy activity, the accurate simulation of westerly jets will greatly improve the atmospheric general circulation and associated climatology in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bals-Elsholz, T. M., E. H. Atallah, L. F. Bosart, T. A. Wasula, M. J. Cempa, and A. R. Lupo, 2001: The wintertime Southern Hemisphere split jet: Structure, variability, and evolution. J. Climate, 14, 4191–4215.

    Article  Google Scholar 

  • Bao, Q., J. Yang, Y. M. Liu, G. X. Wu, and B. Wang, 2010: Roles of anomalous Tibetan Plateau warming on the severe 2008 winter storm in central-southern China. Mon. Wea. Rev., 138, 2375–2384.

    Article  Google Scholar 

  • Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 1607–1623.

    Article  Google Scholar 

  • Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. Zeng, Y. Dai, R. E. Dickinson, and Z.-L. Yang, 2002: The land surface climatology of the community land model coupled to the NCAR community climate model. J. Climate, 15, 3123–3149.

    Article  Google Scholar 

  • Cai, Q. Q., T. J. Zhou, B. Wu, B. Li., and L. X. Zhang, 2011: The East Asian subtropical westerly jet and its interannual variability simulated by a climate system model FGOALS gl. Acta Oceanologica Sinica, 33(4), 38–48. (in Chinese)

    Google Scholar 

  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model Version 3 (CCSM3). J. Climate, 19, 2122–2143.

    Article  Google Scholar 

  • Dell’Aquila, A., V. Lucarini, P. M. Ruti, and S. Calmanti, 2005: Hayashi spectra of the Northern Hemisphere mid-latitude atmospheric variability in the NCEPNCAR and ECMWF reanalysis. Climate Dyn., 25, 639–652.

    Article  Google Scholar 

  • Dickinson, R. E., and Coauthors, 2006: The Community Land Model and its climate statistics as a component of the Community Climate System Model. J. Climate, 19, 2302–2324.

    Article  Google Scholar 

  • Guo, L. L., Y. C. Zhang, B. Wang, L. J. Li, T. J. Zhou, and Q. Bao, 2008: Simulations of the East Asian subtropical westerly jet by LASG/IAP AGCMs. Adv. Atmos. Sci., 25(3), 447–457, doi: 10.1007/s00376-008-0447-0.

    Article  Google Scholar 

  • Held, I. M., 1975: Momentum transport by quasigeostrophic eddies. J. Atmos. Sci., 32, 1494–1497.

    Article  Google Scholar 

  • Held, I. M., and A. Y. Hou, 1980: Zonal jet structure and the leading mode of variability. J. Atmos. Sci., 37, 515–533.

    Article  Google Scholar 

  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 1041–1061.

    Article  Google Scholar 

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946.

    Article  Google Scholar 

  • Jhun, J.-G., and E.-J. Lee, 2004: A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J. Climate, 17, 711–726.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472.

    Article  Google Scholar 

  • Koch, P., H. Wernli, and H. C. Daves, 2006: An event-based jetstream climatology and typology. Int. J. Climatol., 26, 283–301.

    Article  Google Scholar 

  • Krishnamurti, T. N., 1961: The subtropical jet stream of winter. J. Meteor., 18, 172–191.

    Article  Google Scholar 

  • Kuang, X. Y., and Y. C. Zhang, 2006: Impact of the position abnormalities of East Asian subtropical westerly jet on summer precipitation in middle-lower reaches of Yangtze River. Plateau Meteorology, 25(3), 382–289. (in Chinese)

    Google Scholar 

  • Lee, S., and H.-K. Kim, 2003: The dynamical relationship between subtropical and eddy-driven jets. J. Atmos. Sci., 60, 1490–1530.

    Article  Google Scholar 

  • Li, C., and J. J. Wettstein, 2012: Thermally driven and eddy-driven jet variability in reanalysis. J. Climate, 25, 1587–1596, doi: 10.1175/JCLI-D-11-00145.1

    Article  Google Scholar 

  • Li, C. Y., J. T. Wang, S. Z. Lin, and H. R. Cho, 2004: The relationship between Asian summer monsoon activity and northward jump of the upper westerly jet location. Chinese J. Atmos. Sci., 28(5), 641–658. (in Chinese)

    Google Scholar 

  • Li, L. J., and Coauthors, 2013a: The flexible global oceanatmosphere-land system model grid-point version FGOALS-g2. Adv. Atmos. Sci., doi: 10.1007/s00376-012-2140-6.

    Google Scholar 

  • Li, L. J., and Coauthors, 2013b: Evaluation of gridpoint atmospheric model of IAP LASG version 2 (GAMIL2). Adv. Atmos. Sci., doi: 10.1007/s00376-013-2157-5.

    Google Scholar 

  • Limpasuvan, V., and D. L. Hartmann, 1999: Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26(20), 3133–3136, doi: 10.1029/1999GL010478.

    Article  Google Scholar 

  • Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. J. Climate, 20, 4497–4525.

    Article  Google Scholar 

  • Liu, J. P., 2010: Sensitivity of sea ice and ocean simulations to sea ice salinity in a coupled global climate model. Sci. China (Earth), 53 (6), 911–918, doi: 10.1007/s11430-010-0051-x.

    Google Scholar 

  • Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP Climate system Ocean Model (LICOM) version 2. Acta Meteorologica Sinica, 26(3), 318–329, doi: 10.1007/s13351-012-0305-y.

    Article  Google Scholar 

  • Lu, R. Y., 2004: Associations among the components of the East Asian summer monsoon system in the meridional direction. J. Meteor. Soc. Japan, 82, 155–165.

    Article  Google Scholar 

  • Morgan, M. C., and J. W. Nielsen-Gammon, 1998: Using tropopause maps to diagnose midlatitude weather systems. Mon. Wea. Rev., 126, 2555–2579.

    Article  Google Scholar 

  • Ren, X. J., Y. C. Zhang, and Y. Xiang, 2008: Connections between wintertime jet stream variability, oceanic surface heating, and transient eddy activity in the North Pacific. J. Geophys. Res., 113, D21119, doi: 10.1029/2007JD009464.

    Article  Google Scholar 

  • Ren, X. J., X. Yang, and C. J. Chu, 2010: Seasonal variations of the synoptic-scale transient eddy activity and polar front jet over East Asia. J. Climate, 23, 3222–3233.

    Article  Google Scholar 

  • Riehl, H., 1962: Jet Streams of the Atmosphere. Tech. Rep. 32, Department of Atmospheric Science, Colorado State University, 177pp.

    Google Scholar 

  • Sterl, A., 2004: On the (in)homogeneity of reanalysis products. J. Climate, 17, 3866–3873.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi: 10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Trenberth, K. E., and A. Solomon, 1994: The global heat balance: Heat transports in the atmosphere and ocean. Climate Dyn., 10, 107–134.

    Article  Google Scholar 

  • Wang, X. C., J. P. Liu, Y. Q. Yu, H. L. Liu, and L. J. Li, 2009: Numerical simulation of polar climate with FGOALS-g1.1. Acta Meteorologica Sinica, 67(6), 961–972. (in Chinese)

    Google Scholar 

  • Woollings, T, A., Hannachi, and B., Hoskins, 2010: Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856–868. doi: 10.1002/qj.625

    Article  Google Scholar 

  • Yang, S., K.-M. Lau, and K. M. Kim, 2002: Variation of the East Asian jet stream and Asian-Pacific-American winter climate anomalies. J. Climate, 15, 306–325.

    Article  Google Scholar 

  • Yang, S., K.-M. Lau, S.-H. Yoo, J. L. Kinter, K. Miyakoda, and C.-H. Ho, 2004: Upstream subtropical signals preceding the Asian summer monsoon circulation. J. Climate, 17, 4213–4229.

    Article  Google Scholar 

  • Zhang, Y. C., D. Q. Wang, and X. J. Ren, 2008: Seasonal variation of the meridional wind in the temperate jet stream and its relationship to the Asian Monsoon. Acta Meteorologica Sinica, 24(4), 446–454.

    Google Scholar 

  • Zhou, T. J., and R. C. Yu, 2005, Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, doi: 10.1029/2004JD005413

    Article  Google Scholar 

  • Zhou, T. J., and L. W. Zou, 2010: Understanding the predictability of East Asian summer monsoon from the reproduction of land-sea thermal contrast change in AMIP-type simulation. J. Climate, 23(22), 6009–6026.

    Article  Google Scholar 

  • Zhou, T. J., Y. Q. Yu, H. L. Liu, W. Li, X. B. You, and G. Q. Zhou, 2007: Progress in the development and application of climate ocean models and ocean-atmosphere coupled models in China. Adv. Atmos. Sci., 24(6), 1109–1120, doi: 10.1007/s00376-007-1109-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaocun Zhang  (张耀存).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, C., Zhang, Y. Simulation of the westerly jet axis in boreal winter by the climate system model FGOALS-g2. Adv. Atmos. Sci. 30, 754–765 (2013). https://doi.org/10.1007/s00376-012-2167-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-012-2167-8

Key words

Navigation