Skip to main content
Log in

Contribution of the sea surface temperature over the Mediterranean-Black Sea to the decadal shift of the summer North Atlantic Oscillation

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Recent observational study has shown that the southern center of the summer North Atlantic Oscillation (SNAO) was located farther eastward after the late 1970s compared to before. In this study, the cause for this phenomenon is explored. The result shows that the eastward shift of the SNAO southern center after the late 1970s is related to the variability of the Mediterranean-Black Sea (MBS) SST. A warm MBS SST can heat and moisten its overlying atmosphere, consequently producing a negative sea level pressure (SLP) departure over the MBS region. Because the MBS SST is negatively correlated with the SNAO, the negative SLP departure can enhance the eastern part of the negative-phase of the SNAO southern center, consequently producing an eastward SNAO southern center shift. Similarly, a cold MBS SST produces an eastward positive-phase SNAO southern center shift.

The reason for why the MBS SST has an impact on the SNAO after the late 1970s but why it is not the case beforehand is also discussed. It is found that this instable relationship is likely to be attributed to the change of the variability of the MBS SST on the decadal time-scale. In 1951–1975, the variability of the MBS SST is quite weak, but in 1978–2002, it becomes more active. The active SST can enhance the interaction between the sea and its overlying atmosphere, thus strengthening the connection between the MBS SST and the SNAO after the late 1970s. The above observational analysis results are further confirmed by sensitivity experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 1083–1126.

    Article  Google Scholar 

  • Bi, X. Q., 1993: IAP 9-level atmospheric general circulation model and climate simulation. Ph. D. dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, 210pp. (in Chinese)

  • Chang, C. P., P. Harr, and J. Ju, 2001: Possible roles of Atlantic circulations on the weakening Indian monsoon rainfall-ENSO relationship. J. Climate, 14, 2376–2380.

    Article  Google Scholar 

  • Chineke, T. C., X. Q. Bi, H. J. Wang, and F. Xue, 1997: The African climate as predicted by the IAP grid point nine layer atmospheric general circulation model (IAP 9L AGCM). Adv. Atmos. Sci., 14(3), 409–416.

    Article  Google Scholar 

  • Feudale, L., and J. Shukla, 2007: Role of Mediterranean SST in enhancing the European heat wave of summer 2003. Geophys. Res. Lett., 34, L03811, doi:10.1029/2006GL027991.

  • Hilmer, M., and T. Jung, 2000: Evidence for a recent change in the link between the North Atlantic Oscillation and Arctic sea ice export. Geophys. Res. Lett., 27, 989–992.

    Article  Google Scholar 

  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676–679.

    Article  Google Scholar 

  • Hurrell, J. W., and H. van Loon, 1997: Decadal variations in climate associated with the North Atlantic Oscillation. Climate Change, 36, 301–326.

    Article  Google Scholar 

  • Hurrell, J. W., and C. K. Folland, 2002: A change in the summer atmospheric circulation over the North Atlantic. Exchanges, 25, 1–3.

    Google Scholar 

  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Hurrell et al., Eds., Geophysical Monograph Series Vol. 134, 1–35.

  • Jiang, D. B., H. J. Wang, H. Drange, and X. M. Lang, 2003: Last glacial maximum over China: Sensitivities of climate to Paleovegetation and Tibetan ice sheet. J. Geophys. Res., 108(D3), 4102, doi:10.1029/2002JD002167.

    Article  Google Scholar 

  • Jung, T., M. Hilmer, E. Ruprecht, S. Kleppek, S. K. Gulev, and O. Zolina, 2003: Characteristics of the recent eastward shift of interannual NAO variability. J. Climate, 16, 3371–3382.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analy ses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18567–18589.

    Article  Google Scholar 

  • Lang, X. M., H. J. Wang, and D. B. Jiang, 2003: Extraseasonal ensemble numerical predictions of winter climate over China. Chinese Science Bulletin, 48(19), 2121–2125.

    Article  Google Scholar 

  • Li, L. Z. X., 2006: Atmospheric GCM response to an idealized anomaly of the Mediterranean Sea surface temperature. Climate Dyn., 27, 543–552.

    Article  Google Scholar 

  • Li, S. L., 2004: Impact of the Northwest Atlantic SST anomaly on the circulation over the Ural Mountains. J. Meteor. Soc. Japan, 82(4), 971–988.

    Article  Google Scholar 

  • Li, S. L., W. A. Robinson, and S. Peng, 2003: Influence of the North Atlantic SST tripole on northwest African rainfall. J. Geophys. Res., 108(D19), 4594–4610.

    Article  Google Scholar 

  • Liang, X. Z., 1996: Description of a nine-level grid point atmospheric general circulation model. Adv. Atmos. Sci., 13, 269–298.

    Article  Google Scholar 

  • Linderholm, H., C. Folland, D. Fereday, J. Hurrell, S. Ineson, J. Knight, and A. Scaife, 2007: Estimating past summer North Atlantic Oscillation (SNAO) variability with tree-ring data. Geophysical Research Abstracts, 9, 10255.

    Google Scholar 

  • Lu, J., and R. J. Greatbatch, 2002: The changing relationship between the NAO and northern hemisphere climate variability. Geophys. Res. Lett., 29, 1148, doi:10.1029/2001GL014052.

    Article  Google Scholar 

  • Luo, D., and T. Gong, 2006: A possible mechanism for the eastward shift of interannual NAO action centers in last three decades. Geophys. Res. Lett., 33, L24815, doi: 10.1029/2006GL027860.

    Article  Google Scholar 

  • Moron, V., 2003: Long-term variability of the Mediterranean Sea surface temperature (1856–2000). Comptes Rendus Geosciences, 335, 721–727.

    Article  Google Scholar 

  • Peterson, K. A., J. Lu, and R. J. Greatbatch, 2003: Evidence of nonlinear dynamics in the eastward shift of the NAO. Geophys. Res. Lett., 30, 1030, doi:10.1029/2002GL015585.

    Article  Google Scholar 

  • Pisacane, G., V. Artale, S. Calmanti, and V. Rupolo, 2006: Decadal oscillation in the Mediterranean Sea: A result of the overturning circulation variability in the eastern basin. Climate Res., 31, 257–271.

    Article  Google Scholar 

  • Sun, J., H. Wang, and W. Yuan, 2008: Decadal variations of the relationship between the summer North Atlantic Oscillation and middle East Asian air temperature. J. Geophys. Res., 113, D15107, doi:10.1029/2007JD009626.

  • Ulbrich, U., and M. Christoph, 1999: A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Climate Dyn., 15, 551–559.

    Article  Google Scholar 

  • van Loon, H., and J. C. Rogers, 1978: The seesaw in winter temperatures between Greenland and northern Europe. Part I: General description. Mon. Wea. Rev., 106, 296–310.

    Article  Google Scholar 

  • Walker, G. T., and E. W. Bliss, 1932: World weather V. Memoirs of the Royal Meteorological Society, 4, 53–84.

    Google Scholar 

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784–812.

    Article  Google Scholar 

  • Wang, H. J., 2002: The Mid-Holocene climate simulated by a grid point AGCM coupled with a biome model. Adv. Atmos. Sci., 19(2), 205–218.

    Article  Google Scholar 

  • Wang, H. J., F. Xue, and X. Q. Bi, 1997: The interannual variability and predictability in a global climate model. Adv. Atmos. Sci., 14(4), 554–562.

    Article  Google Scholar 

  • Wang, H. J., X. M. Lang, G. Q. Zhou, and D. J. Kang, 2003: A preliminary report of the model prediction on the forthcoming winter and spring dust climate over China. Chinese J. Atmos. Sci., 27(1), 136–140. (in Chinese)

    Google Scholar 

  • Wang, H. J., X. M. Lang, K. Fan, J. Q. Sun, and G. Q. Zhou, 2006: Real-time climate prediction experiment for the typhoon frequency in the western North Pacific for 2006. Climatic and Environmental Research, 11(2), 133–137. (in Chinese)

    Google Scholar 

  • Xue, F., X. Q. Bi, and Y. H. Lin, 2001: Modelling the global monsoon system by IAP 9L AGCM. Adv. Atmos. Sci., 18(3), 404–412.

    Article  Google Scholar 

  • Yang, S., K. M. Lau, S. H. Yoo, J. L. Kinter, K. Miyakoda, and C. H. Ho, 2004: Upstream subtropical signals preceding the Asian summer monsoon circulation. J. Climate, 17, 4213–4229.

    Article  Google Scholar 

  • Yu, R. C., and T. J. Zhou, 2004: Impacts of winter-NAO on March cooling trends over subtropical Eurasia continent in the recent half century. Geophys. Res. Lett., 31, L12204, doi: 10.1029/2004GL019814.

  • Zeng, Q. C., C. G. Yuan, X. H. Zhang, X. Z. Liang, and N. Ban, 1987: A global grid-point general circulation model. Collection of papers presented at the WMO/IUGG NWP Symposium, Tokyo, 4–8 August 986. J. Meteor. Soc. Japan, special volume, 421–430.

  • Zhang, X. H., 1990: Dynamical framework of IAP ninelevel atmospheric general circulation model. Adv. Atmos. Sci., 7, 66–77.

    Google Scholar 

  • Zhang, Z. S., H. J. Wang, Z. T. Guo, and D. B. Jiang, 2007: Impacts of tectonic changes on the reorganization of the Cenozoic paleoclimatic patterns in China. Earth and Planetary Science Letters, 257, 622–634.

    Article  Google Scholar 

  • Zveryaev, I. I., and A. V. Arkhipkin, 2008: Structure of climatic variability of the Mediterranean Sea surface temperature. Part II. Principal modes of variability. Russian Meteorology and Hydrology, 33(7), 446–452.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqi Sun  (孙建奇).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Yuan, W. Contribution of the sea surface temperature over the Mediterranean-Black Sea to the decadal shift of the summer North Atlantic Oscillation. Adv. Atmos. Sci. 26, 717–726 (2009). https://doi.org/10.1007/s00376-009-8210-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-009-8210-8

Key words

Navigation