Skip to main content
Log in

Litter decomposition along a primary post-mining chronosequence

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The aim of this study was to describe the decomposition of litter along a successive series of sites developed at a post-mining overburden deposit over 12, 21 and 45 years, representing the early, mid and late stages of succession. Litter decomposition was largely dependent on the initial composition of the litters. The tree litter of the mid and late stages decomposed faster than the grass litter of the early stage, with 64, 60 and 35 % of mass lost over 2 years, respectively. The contents of hot-water-soluble C and N, which were the best predictors of litter decay rates, were relatively stable over time in all litters. Neither the nutrient content nor the plant biopolymer composition exhibited convergence during decay, indicating that the litter-derived soil organic matter most likely carries a legacy of the original vegetation. In contrast to the litter chemistry, the development of the microbial community was largely specific to the decay stage and consistent among the litters, showing decreasing fungal dominance in time. Extracellular enzymes were found to be of limited value in the prediction of litter decay rates, chemical transformation or microbial community composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angers DA, Caron J (1998) Plant-induced changes in soil structure: processes and feedbacks. Biogeochemistry 42:55–72

    Article  Google Scholar 

  • Aubert M, Margerie P, Trap J, Bureau F (2010) Aboveground-belowground relationships in temperate forests: plant litter composes and microbiota orchestrates. Forest Ecol Manag 259:563–572

    Article  Google Scholar 

  • Baldrian P, Trögl J, Frouz J, Šnajdr J, Valášková V, Merhautová V, Cajthaml T, Herinková J (2008) Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining. Soil Biol Biochem 40:2107–2115

    Article  CAS  Google Scholar 

  • Bardgett RD, Walker LR (2004) Impact of coloniser plant species on the development of decomposer microbial communities following deglaciation. Soil Biol Biochem 36:555–559

    Article  CAS  Google Scholar 

  • Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005) A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol 20:634–641

    Article  PubMed  Google Scholar 

  • Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. Forest Ecol Manag 133:13–22

    Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102

    Article  CAS  PubMed  Google Scholar 

  • Brady NC, Weil R (2008) The nature and properties of soils. Prentice Hall, Upper Saddle River, 992 pp

    Google Scholar 

  • Chodak M, Niklinska M (2010) The effect of different tree species on the chemical and microbial properties of reclaimed mine soils. Biol Fertil Soils 46:555–566

    Article  CAS  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Diaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • De Kovel CGF, Van Mierlo A, Wilms YJO, Berendse F (2000) Carbon and nitrogen in soil and vegetation at sites differing in successional age. Plant Ecol 149:43–50

    Article  Google Scholar 

  • Dunger W, Wanner M, Hauser H, Hohberg K, Schulz HJ, Schwalbe T, Seifert B, Vogel J, Voigtlander K, Zimdars B, Zulka KP (2001) Development of soil fauna at mine sites during 46 years after afforestation. Pedobiologia 45:243–271

    Article  Google Scholar 

  • Esperschütz J, Pérez-De-Mora A, Schreiner K, Welzl G, Buegger F, Zeyer J, Hagedorn F, Munch JC, Schloter M (2011) Microbial food web dynamics along a soil chronosequence of a glacier forefield. Biogeosciences 8:3283–3294

    Article  Google Scholar 

  • Fioretto A, Di Nardo C, Papa S, Fuggi A (2005) Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem. Soil Biol Biochem 37:1083–1091

    Article  CAS  Google Scholar 

  • Frankland JC (1998) Fungal succession—unravelling the unpredictable. Mycol Res 102:1–15

    Article  Google Scholar 

  • Frouz J, Nováková A (2005) Development of soil microbial properties in topsoil layer during spontaneous succession in heaps after brown coal mining in relation to humus microstructure development. Geoderma 129:54–64

    Article  Google Scholar 

  • Frouz J, Keplin B, Pižl V, Tajovský K, Starý J, Lukešová A, Nováková A, Balík V, Hánel L, Materna J, Duker C, Chalupský J, Rusek J, Heinkele T (2001) Soil biota and upper soil layer development in two contrasting post-mining chronosequences. Ecol Eng 17:275–284

    Article  Google Scholar 

  • Frouz J, Elhottová D, Pižl V, Tajovský K, Šourková M, Picek T, Malý S (2007) The effect of litter quality and soil faunal composition on organic matter dynamics in post-mining soil: a laboratory study. Appl Soil Ecol 37:72–80

    Article  Google Scholar 

  • Frouz J, Prach K, Pižl V, Háněl L, Starý J, Tajovský K, Materna J, Balík V, Kalčík J, Řehounková K (2008) Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. Eur J Soil Biol 44:109–121

    Article  Google Scholar 

  • Frouz J, Livečková M, Albrechtová J, Chroňáková A, Cajthaml T, Pižl V, Háněl L, Starý J, Baldrian P, Lhotáková Z, Šimáčková H, Cepáková Š (2013) Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites. Forest Ecol Manag 309:87–95

    Article  Google Scholar 

  • Grayston SJ, Wang SQ, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  • Güsewell S, Freeman C (2005) Nutrient limitation and enzyme activities during litter decomposition of nine wetland species in relation to litter N: P ratios. Funct Ecol 19:582–593

    Article  Google Scholar 

  • Güsewell S, Gessner MO (2009) N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct Ecol 23:211–219

    Article  Google Scholar 

  • Hättenschwiler S, Jørgensen HB (2010) Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J Ecol 98:754–763

    Article  Google Scholar 

  • Helingerová M, Frouz J, Šantrůčková H (2010) Microbial activity in reclaimed and unreclaimed post-mining sites near Sokolov (Czech Republic). Ecol Eng 36:768–776

    Article  Google Scholar 

  • Hopkins DW, Badalucco L, English LC, Meli SM, Chudek JA, Ioppolo A (2007) Plant litter decomposition and microbial characteristics in volcanic soils (Mt Etna, Sicily) at different stages of development. Biol Fertil Soils 43:461–469

    Article  Google Scholar 

  • Kazakou E, Vile D, Shipley B, Gallet C, Garnier E (2006) Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Funct Ecol 20:21–30

    Article  Google Scholar 

  • Kiikkila O, Kitunen V, Smolander A (2006) Dissolved soil organic matter from surface organic horizons under birch and conifers: degradation in relation to chemical characteristics. Soil Biol Biochem 38:737–746

    Article  Google Scholar 

  • Kirk TK, Obst JR (1988) Lignin determination. Meth Enzymol 161:87–101

    Article  CAS  Google Scholar 

  • Kirmer A, Mahn EG (2001) Spontaneous and initiated succession on unvegetated slopes in the abandoned lignite-mining area of Goitsche, Germany. Appl Veget Sci 4:19–27

    Article  Google Scholar 

  • Knelman JE, Legg TM, O’Neill SP, Washenberger CL, González A, Cleveland CC, Nemergut DR (2012) Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol Biochem 46:172–180

    Article  CAS  Google Scholar 

  • Kuráž V, Frouz J, Kuráž M, Mako A, Shustr V, Cejpek J, Romanov OV, Abakumov EV (2012) Changes in some physical properties of soils in the chronosequence of self-overgrown dumps of the Sokolov quarry-dump complex, Czechia. Eurasian Soil Sci 45:266–272

    Article  Google Scholar 

  • Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193

    CAS  Google Scholar 

  • Makkonen M, Berg MP, Handa IT, Hättenschwiler S, van Ruijven J, van Bodegom PM, Aerts R (2012) Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol Lett 15:1033–1041

    Article  PubMed  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  CAS  Google Scholar 

  • Mudrák O, Frouz J, Velichová V (2010) Understory vegetation in reclaimed and unreclaimed post-mining forest stands. Ecol Eng 36:783–790

    Article  Google Scholar 

  • Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S (2012) Soil enzymology: classical and molecular approaches. Biol Fertil Soils 48:743–762

    Article  Google Scholar 

  • Ngo TT, Lenhoff HM (1980) A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Anal Biochem 105:389–397

    Article  CAS  PubMed  Google Scholar 

  • Osono T, Takeda H (2005) Decomposition of organic chemical components in relation to nitrogen dynamics in leaf litter of 14 tree species in a cool temperate forest. Ecol Res 20:41–49

    Article  CAS  Google Scholar 

  • Pennanen T, Strömmer R, Markkola A, Fritze H (2001) Microbial and plant community structure across a primary succession gradient. Scand J Forest Res 16:37–43

    Article  Google Scholar 

  • Prach K, Pyšek P (2001) Using spontaneous succession for restoration of human-disturbed habitats: experience from central Europe. Ecol Eng 17:55–62

    Article  Google Scholar 

  • Quideau SA, Chadwick OA, Benesi A, Graham RC, Anderson MA (2001) A direct link between forest vegetation type and soil organic matter composition. Geoderma 104:41–60

    Article  CAS  Google Scholar 

  • Rubino M, Dungait JAJ, Evershed RP, Bertolini T, De Angelis P, D’Onofrio A, Lagomarsino A, Lubritto C, Merola A, Terrasi F, Cotrufo MF (2010) Carbon input belowground is the major C flux contributing to leaf litter mass loss: evidences from a 13C labelled-leaf litter experiment. Soil Biol Biochem 42:1009–1016

    Article  CAS  Google Scholar 

  • Šantrůčková H, Krištůfková M, Vaněk D (2006) Decomposition rate and nutrient release from plant litter of Norway spruce forest in the Bohemian Forest. Biologia 61:S499–S508

    Article  Google Scholar 

  • Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, Richter A, Eberl L, Zechmeister-Boltenstern S, Riedel K (2012) Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J 6:1749–1762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi AD, Penfold C, Marschner P (2013) Decomposition of roots and shoots of perennial grasses and annual barley-separately or in two residue mixes. Biol Fertil Soils 49:673–680

    Article  Google Scholar 

  • Šnajdr J, Valášková V, Merhautová V, Herinková J, Cajthaml T, Baldrian P (2008) Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biol Biochem 40:2068–2075

    Article  Google Scholar 

  • Šnajdr J, Cajthaml T, Valášková V, Merhautová V, Petránková M, Spetz P, Leppanen K, Baldrian P (2011) Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiol Ecol 75:291–303

    Article  PubMed  Google Scholar 

  • Šnajdr J, Dobiášová P, Urbanová M, Petránková M, Cajthaml T, Frouz J, Baldrian P (2013) Dominant trees affect microbial community composition and activity in post-mining afforested soils. Soil Biol Biochem 56:105–115

    Article  Google Scholar 

  • Šourková M, Frouz J, Fettweis U, Bens O, Hüttl RF, Šantrůčková H (2005a) Soil development and properties of microbial biomass succession in reclaimed post mining sites near Sokolov (Czech Republic) and near Cottbus (Germany). Geoderma 129:73–80

    Article  Google Scholar 

  • Šourková M, Frouz J, Šantrůčková H (2005b) Accumulation of carbon, nitrogen and phosphorus during soil formation on alder spoil heaps after brown-coal mining, near Sokolov (Czech Republic). Geoderma 124:203–214

    Article  Google Scholar 

  • Štursová M, Baldrian P (2011) Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity. Plant Soil 338:99–110

    Article  Google Scholar 

  • Sundberg A, Pranovich AV, Holmbom B (2003) Chemical characterization of various types of mechanical pulp fines. J Pulp Paper Sci 29:173–178

    CAS  Google Scholar 

  • Talbot JM, Treseder KK (2012) Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships. Ecology 93:345–354

    Article  PubMed  Google Scholar 

  • Thevenot M, Dignac MF, Mendez-Millan M, Bahri H, Hatte C, Bardoux G, Rumpel C (2013) Ligno-aliphatic complexes in soils revealed by an isolation procedure: implication for lignin fate. Biol Fertil Soils 49:517–526

    Article  CAS  Google Scholar 

  • Tilston EL, Halpin C, Hopkins DW (2013) Decomposition of tobacco roots with modified phenylpropanoid content by fungi with contrasting lignocellulose degradation strategies. Biol Fertil Soils 49:305–311

    Article  CAS  Google Scholar 

  • Trofymow JA, Moore TR, Titus B, Prescott C, Morrison I, Siltanen M, Smith S, Fyles J, Wein R, Camir TC, Duschene L, Kozak L, Kranabetter M, Visser S (2002) Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can J Forest Res 32:789–804

    Article  Google Scholar 

  • Urbanová M, Kopecký J, Valášková V, Ságová-Marečková M, Elhottová D, Kyselková M, Moënne-Loccoz Y, Baldrian P (2011) Development of bacterial community during spontaneous succession on spoil heaps after brown coal mining. FEMS Microbiol Ecol 78:59–69

    Article  PubMed  Google Scholar 

  • Valášková V, Šnajdr J, Bittner B, Cajthaml T, Merhautová V, Hoffichter M, Baldrian P (2007) Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest. Soil Biol Biochem 39:2651–2660

    Article  Google Scholar 

  • Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486

    Article  PubMed Central  PubMed  Google Scholar 

  • Voříšková J, Dobiášová P, Šnajdr J, Vaněk D, Cajthaml T, Šantrůčková H, Baldrian P (2011) Chemical composition of litter affects the growth and enzyme production by the saprotrophic basidiomycete Hypholoma fasciculare. Fungal Ecol 4:417–426

    Article  Google Scholar 

  • Wickings K, Grandy AS, Reed SC, Cleveland CC (2012) The origin of litter chemical complexity during decomposition. Ecol Lett 15:1180–1188

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Czech Science Foundation (P504/12/1288), the Ministry of Education, Youth and Sports of the Czech Republic (LC06066) and the Research Concept of the Institute of Microbiology ASCR (RVO61388971). We also thank the Sokolovská Uhelná a.s. coal mining company for the research permit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Baldrian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urbanová, M., Šnajdr, J., Brabcová, V. et al. Litter decomposition along a primary post-mining chronosequence. Biol Fertil Soils 50, 827–837 (2014). https://doi.org/10.1007/s00374-014-0905-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-014-0905-z

Keywords

Navigation