Skip to main content
Log in

Completing Partial Latin Squares with Blocks of Non-empty Cells

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

In this paper we develop two methods for completing partial latin squares and prove the following. Let \(A\) be a partial latin square of order \(nr\) in which all non-empty cells occur in at most \(n-1\) \(r\times r\) squares. If \(t_1,\ldots , t_m\) are positive integers for which \(n\geqslant t_1^2+t_2^2+\cdots +t_m^2+1\) and if \(A\) is the union of \(m\) subsquares each with order \(rt_i\), then \(A\) can be completed. We additionally show that if \(n\geqslant r+1\) and \(A\) is the union of \(n\) identical \(r\times r\) squares with disjoint rows and columns, then \(A\) can be completed. For smaller values of \(n\) we show that a completion does not always exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Anderson, L.D., Hilton, A.J.W.: Thanks Evans!. Proc. Lond. Math. Soc. 47, 507–522 (1983)

    Article  Google Scholar 

  2. Dénes, J., Keedwell, A.: Latin Squares, Annals of Discrete Mathematics. New developments in the theory and applications, vol. 46. With contributions by G.B. Belyavskaya, A.E. Brouwer, T. Evans, K. Heinrich, C.C. Lindner, and D.A. Preece. With a foreword by Paul Erdős. North-Holland Publishing Co., Amsterdam (1991)

  3. Denley, T., Häggkvist, R.: Completing some partial Latin squares. Eur. J. Comb. 21, 877–880 (1995)

    Article  Google Scholar 

  4. Evans, T.: Embedding incomplete Latin squares. Am. Math. Mon. 67, 958–961 (1960)

    Article  Google Scholar 

  5. Häggkvist, R.: A solution to the Evans conjecture for Latin squares of large size. Colloqu. Math. Soc. Janos Bolyai 18, 405–513 (1978)

    Google Scholar 

  6. Hall, P.: On representatives of subsets. J. Lond. Math. Soc. 10, 26–30 (1935)

    Google Scholar 

  7. Hilton, A.J.W.: The reconstruction of latin squares with applications to school timetables and experimental design. Math. Progr. Study 13, 68–77 (1980)

    Article  MATH  Google Scholar 

  8. Öhman, L.-D.: A note on completing Latin squares, Australas. J. Comb. 45, 117–123 (2009)

    MATH  Google Scholar 

  9. Kuhl, J., Denley, T.: On a generalization of the Evans conjecture. Discret. Math. 308, 4763–4767 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ryser, H.J.: A combinatorial theorem with an application to Latin squares. Proc. Am. Math. Soc. 2, 550–552 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  11. Smetaniuk, B.: A new construction for latin squares I. Proof of the Evans conjecture. Ars Comb. 11, 155–172 (1981)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaromy Kuhl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuhl, J., Schroeder, M.W. Completing Partial Latin Squares with Blocks of Non-empty Cells. Graphs and Combinatorics 32, 241–256 (2016). https://doi.org/10.1007/s00373-015-1571-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-015-1571-0

Keywords

Navigation