Skip to main content
Log in

Characterization of Extremal Antipodal Polygons

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let \(S\) be a set of \(2n\) points on a circle such that for each point \(p \in S\) also its antipodal (mirrored with respect to the circle center) point \(p'\) belongs to \(S\). A polygon \(P\) of size \(n\) is called antipodal if it consists of precisely one point of each antipodal pair \((p,p')\) of \(S\). We provide a complete characterization of antipodal polygons which maximize (minimize, respectively) the area among all antipodal polygons of \(S\). Based on this characterization, a simple linear time algorithm is presented for computing extremal antipodal polygons. Moreover, for the generalization of antipodal polygons to higher dimensions we show that a similar characterization does not exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. This property is not “if and only if” because there also exist non-thick polygons fulfilling the property.

References

  1. Arkin, E., Dieckmann, C., Knauer, C., Mitchell, J., Polishchuk, V., Schlipf, L., Yang, S.: Convex transversals. Comput. Geom. 47(2), 224–239 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arom, S., Thom, M., Tuckett, B., Boyd, R., Ligeti, G.: African Polyphony and Polyrhythm: Musical Structure and Methodology. Cambridge University Press, Cambridge (1991)

  3. Audet, C., Hansen, P., Messine, F.: Extremal problems for convex polygons. J. Glob. Optim. 38, 163–179 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boyce, J.E., Dobkin, D.P., Drysdale III, R.L., Guibas, L.J.: Finding extremal polygons. SIAM J. Comput. 14(1), 134–147 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chemillier, M., Truchet, C.: Computation of words satisfying the“rhythmic oddity property” (after simha arom’s works). Inf. Process. Lett. 86(5), 255–261 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Díaz-Báñez, J.M., Farigu, G., Gómez, F., Rappaport, D., Toussaint., G.T.: El compás flamenco: a phylogenetic analysis. In: Proceedings of BRIDGES: Mathematical Connections in Art, Music and Science, pp. 61–70 (2004)

  7. Díaz-Báñez, J.M., Korman, M., Pérez-Lantero, P., Pilz, A., Seara, C., Silvera, R.: New results on stabbing segments with a polygon. Comput. Geom. 48(1), 14–29 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gale, D.: Neighboring vertices on a convex polyhedron. Linear inequalities and related system. In: Proceedings of Annals of Mathematics Studies, vol. 38, pp. 255–263. Princeton University Press, Princeton (1956)

  9. Matoušek, J.: Using the Borsuk–Ulam theorem. Lectures on Topological Methods in Combinatorics and Geometry. Universitext. Springer, Berlin (2003)

  10. Rappaport, D.: Maximal area sets and harmony. Gr. Comb. 23, 321–329 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Sadie, S., Grove,G.: The New Grove Dictionary of Music and Musicians. Macmillan; Grove’s Dictionaries of Music (1980)

  12. Tóth, L.F.: On the sum of distances determined by a pointset. Acta Math. Acad. Sci. Hungar. 7, 397–401 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  13. Toussaint, G.: Mathematical features for recognizing preference in sub-saharan african traditional rhythm timelines. In: Proceedings of Pattern Recognition and Data Mining, pp. 18–27. Springer, New York (2005)

  14. Toussaint, G.: Computational geometric aspects of rhythm, melody, and voice-leading. Comput. Geom. Theory Appl. 43(1), 2–22 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Toussaint, G.T., Matthews, L., Campbell, M., Brown, N.: Measuring musical rhythm similarity: transformation versus feature-based methods. J. Interdiscip. Music Stud. 6, 23–53 (2012)

    Google Scholar 

Download references

Acknowledgments

The problems studied here were introduced and partially solved during a visit to the University of La Havana, Cuba. We thank the project COFLA: Computational analysis of the Flamenco music (FEDER P09-TIC-4840 and FEDER P12-TIC-1362) for posing us the basic problem studied in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Díaz-Báñez.

Additional information

O. Aichholzer was partially supported by the ESF EUROCORES programme EuroGIGA - ComPoSe, Austrian Science Fund (FWF): I 648-N18. J.M.D.-B. was partially supported by projects FEDER P09-TIC-4840, P12-TIC-1362 (Junta de Andalucía), and by the ESF EUROCORES program EuroGIGA-ComPoSe IP04-MICINN Project EUI-EURC-201-4306. R. Fabila-Monroy was partially supported by Conacyt of Mexico, Grant 153984.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aichholzer, O., Caraballo, L.E., Díaz-Báñez, J.M. et al. Characterization of Extremal Antipodal Polygons. Graphs and Combinatorics 31, 321–333 (2015). https://doi.org/10.1007/s00373-015-1548-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-015-1548-z

Keywords

Navigation