Skip to main content
Log in

Boxicity of Circular Arc Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A k-dimensional box is a Cartesian product R 1 × · · · × R k where each R i is a closed interval on the real line. The boxicity of a graph G, denoted as box(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-dimensional boxes. That is, two vertices are adjacent if and only if their corresponding boxes intersect. A circular arc graph is a graph that can be represented as the intersection graph of arcs on a circle. We show that if G is a circular arc graph which admits a circular arc representation in which no arc has length at least \({\pi(\frac{\alpha-1}{\alpha})}\) for some \({\alpha\in\mathbb{N}_{\geq 2}}\), then box(G) ≤ α (Here the arcs are considered with respect to a unit circle). From this result we show that if G has maximum degree \({\Delta < \lfloor{\frac{n(\alpha-1)}{2\alpha}}\rfloor}\) for some \({\alpha \in \mathbb{N}_{\geq 2}}\), then box(G) ≤ α. We also demonstrate a graph having box(G) > α but with \({\Delta=n\frac{(\alpha-1)}{2\alpha}+ \frac{n}{2\alpha(\alpha+1)}+(\alpha+2)}\). For a proper circular arc graph G, we show that if \({\Delta < \lfloor{\frac{n(\alpha-1)}{\alpha}}\rfloor}\) for some \({\alpha\in \mathbb{N}_{\geq 2}}\), then box(G) ≤ α. Let r be the cardinality of the minimum overlap set, i.e. the minimum number of arcs passing through any point on the circle, with respect to some circular arc representation of G. We show that for any circular arc graph G, box(G) ≤ r + 1 and this bound is tight. We show that if G admits a circular arc representation in which no family of k ≤ 3 arcs covers the circle, then box(G) ≤ 3 and if G admits a circular arc representation in which no family of k ≤ 4 arcs covers the circle, then box(G) ≤ 2. We also show that both these bounds are tight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belkale N., Chandran L.S.: Hadwiger’s conjecture for proper circular arc graphs. Eur. J. Combin. 30(4), 946–956 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chandran L., Das A., Shah C.D.: Cubicity, boxicity and vertex cover. Disc. Math. 309(8), 2488–2496 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chandran, L.S., Sivadasan, N.: Geometric representation of graphs in low dimension using axis parallel boxes. Algorithmica. doi:10.1007/s00453-008-9163-5

  4. Chandran L.S., Francis M.C., Sivadasan N.: Boxicity and maximum degree. J. Combin. Theory Ser. B 98(2), 443–445 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chandran L.S., Sivadasan N.: Boxicity and treewidth. J. Combin. Theory Ser. B 97(5), 733–744 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cozzens M.B., Roberts F.S.: Computing the boxicity of a graph by covering its complement by cointerval graphs. Disc. Appl. Math. 6, 217–228 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Esperet L.: Boxicity of graphs with bounded degree. Eur. J. Combin. 30(5), 1277–1280 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Freeman L.C.: Spheres, cubes and boxes: graph dimensionality and network structure. Soc. Netw. 5, 139–156 (1983)

    Article  MathSciNet  Google Scholar 

  9. Golumbic M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  10. Golumbic M.C., Hammer P.L.: Stability in circular arc graphs. J. Algorithms 9(3), 314–320 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hell P., Huang J.: Interval bigraphs and circular arc graphs. J. Graph Theory 46(4), 313–327 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kloks T., Kratsch D., Müller H.: Coloring a family of circular arcs. SIAM J. Appl. Math. 29(3), 493–502 (1975)

    Article  MathSciNet  Google Scholar 

  13. Kratochvil J.: A special planar satisfiability problem and a consequence of its NP-completeness. Disc. Appl. Math. 52, 233–252 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, M.C., Rautenbach, D., Soulignac, F.J., Szwarcfiter, J.L.: Powers of cycles, powers of paths, and distance graphs, preprint (2009)

  15. Lin M.C., Szwarcfiter J.L.: Unit circular-arc graph representations and feasible circulations. SIAM J. Discrete Math. 22(1), 409–423 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin M.C., Szwarcfiter J.L.: Characterizations and recognition of circular-arc graphs and subclasses: a survey. Disc. Math. 309(18), 5618–5635 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Min Chih Lin, F.J.S., Szwarcfiter, J.L.: The clique operator on circular-arc graphs. Disc. Appl. Math. (2009, in press)

  18. Müller H.: Recognizing interval digraphs and interval bigraphs in polynomial time. Disc. Appl. Math. 78(1-3), 189–205 (1997)

    Article  MATH  Google Scholar 

  19. Opsut, R., Roberts, F.: On the fleet maintainence, mobile radio frequency, task assignment, and traffic phasing problems in g. In: The Theory and Applications of Graphs. Wiley, New York (1981)

  20. Roberts, F.S.: Recent Progresses in combinatorics. In: On the Boxicity and Cubicity of a Graph. Academic Press, New York, pp. 301–310 (1969)

  21. Roberts F.S.: Discrete Mathematical Models with Applications to Social, Biological and Environmental Problems. Prentice-Hall, Englewod Cliffs (1976)

    MATH  Google Scholar 

  22. Scheinerman, E.R.: Intersection classes and multiple intersection parameters. PhD thesis, Princeton University (1984)

  23. Soulignac, F.: On proper and helly circular-arc graphs. PhD thesis, Universidad de Buenos Aires (2010)

  24. Thomassen C.: Interval representations of planar graphs. J. Combin. Theory Ser. B 40, 9–20 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tucker A.: Structure theorems for some circular-arc graphs. Disc. Math. 7, 167–195 (1974)

    Article  MATH  Google Scholar 

  26. Yannakakis M.: The complexity of the partial order dimension problem. SIAM J. Alg. Disc. Math. 3(3), 351–358 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diptendu Bhowmick.

Additional information

This work was supported by DST grant SR/S3/EECE/62/2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhowmick, D., Chandran, L.S. Boxicity of Circular Arc Graphs. Graphs and Combinatorics 27, 769–783 (2011). https://doi.org/10.1007/s00373-010-1002-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-010-1002-1

Keywords

Navigation