Skip to main content
Log in

Magnitude-frequency distribution of submarine landslides in the Gioia Basin (southern Tyrrhenian Sea)

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Regional inventories and magnitude-frequency relationships provide critical information about landslides and represent a first step in landslide hazard assessment. Despite this, the availability of accurate inventories in the marine environment remains poor because of the commonly low accessibility of high-resolution data at regional scales. Evaluating high-resolution bathymetric data spanning the time interval 2007–2011 for the Gioa Basin of the southern Tyrrhenian Sea yielded a landslide inventory of 428 events affecting an area of >85 km2 and mobilizing approximately 1.4 km3 of sediment. This is the first time that this area is studied in such detail, justifying comparison with other areas both onland and offshore. Statistical analyses revealed that the cumulative distribution of the dataset is characterized by two right-skewed probability distributions with a heavy tail. Moreover, evidence of a rollover for smaller landslide volumes is consistent with similar trends reported in other settings worldwide. This may reflect an observational limitation and the site-specific geologic factors that influence landslide occurrence. The robust validation of both power-law and log-normal probability distributions enables the quantification of a range of probabilities for new extreme events far from the background landslide sizes defined in the area. This is a useful tool at regional scales, especially in geologically active areas where submarine landslides can occur frequently, such as the Gioia Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonioli F, Ferranti L, Lambeck K, Kershaw S, Verrubbi V, Dai Pra G (2006) Late Pleistocene to Holocene record of changing uplift rates in southern Calabria and northeastern Sicily (southern Italy, Central Mediterranean Sea). Tectonophysics 422:23–40

    Article  Google Scholar 

  • Ardizzone F, Cardinali M, Guzzetti F, Reichenbach P (2008) Comparing landslide inventory maps. Geomorphology 94:268–289

    Article  Google Scholar 

  • Assier-Rzadkiewicz S, Heinrich P, Sabatier PC, Savoye B, Bourillet JF (2000) Numerical modelling of a landslide-generated tsunami: the 1979 Nice event. Pure Appl Geophys 157:1717–1727

    Google Scholar 

  • Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Phys Rev A 38:364–374. doi:10.1103/PhysRevA.38.364

    Article  Google Scholar 

  • Brunetti MT, Guzzetti F, Rossi M (2009) Probability distributions of landslide volumes. Nonlinear Process Geophys 16:179–188. doi:10.5194/npg-16-179-2009

    Article  Google Scholar 

  • Casalbore D, Romagnoli C, Bosman A, Chiocci FL (2011) Potential tsunamigenic landslides at Stromboli volcano (Italy): insight from marine DEM analysis. Geomorphology 126:42–50. doi:10.1016/j.geomorph.2010.10.026

    Article  Google Scholar 

  • Casalbore D, Bosman A, Chiocci F (2012) Study of recent small-scale landslides in geologically active marine areas through repeated multibeam surveys: examples from the Southern Italy. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine mass movements and their consequences, vol 31, Advances in Natural and Technological Hazards Research. Springer, Heidelberg, pp 573–582

    Chapter  Google Scholar 

  • Casalbore D, Bosman A, Ridente D, Chiocci F (2014) Coastal and submarine landslides in the tectonically-active Tyrrhenian Calabrian margin (Southern Italy): examples and geohazard implications. In: Krastel S (ed) Submarine mass movements and their consequences, vol 37, Advances in Natural and Technological Hazards Research. Springer, Heidelberg, pp 261–269. doi:10.1007/978-3-319-00972-8

    Chapter  Google Scholar 

  • Catalano S, De Guidi G, Monaco C, Tortorici G, Tortorici L (2008) Active faulting and seismicity along the Siculo–Calabrian Rift Zone (Southern Italy). Tectonophysics 453:177–192. doi:10.1016/j.tecto.2007.05.008

    Article  Google Scholar 

  • Chaytor JD, ten Brink US, Solow AR, Andrews BD (2009) Size distribution of submarine landslides along the US Atlantic margin. Mar Geol 264:16–27. doi:10.1016/j.margeo.2008.08.007

    Article  Google Scholar 

  • Chiocci FL, Ridente D (2011) Regional-scale seafloor mapping and geohazard assessment. The experience from the Italian project MaGIC (Marine Geohazards along the Italian Coasts). Mar Geophys Res 32:13–23. doi:10.1007/s11001-011-9120-6

    Article  Google Scholar 

  • Chiocci FL, Romagnoli C, Tommasi P, Bosman A (2008) The Stromboli 2002 tsunamigenic submarine slide: characteristics and possible failure mechanisms. J Geophys Res Solid Earth 113:B10102. doi:10.1029/2007JB005172

    Article  Google Scholar 

  • Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Rev 51:661–703. doi:10.1137/070710111

    Article  Google Scholar 

  • Colantoni P, Gennesseaux M, Vanney JR, Ulzega A, Melegari G, Trombetta A (1992) Dynamic processes in the Gioia Tauro submarine canyon (Tyrrhenian Sea) (in Italian). Gior Geol 54:199–213

    Google Scholar 

  • Dan G, Sultan N, Savoye B (2007) The 1979 Nice harbour catastrophe revisited: trigger mechanism inferred from geotechnical measurements and numerical modelling. Mar Geol 245:40–64

    Article  Google Scholar 

  • Dunning SA, Mitchell WA, Petley DN, Rosser NJ, Cox NJ (2007) Landslides predating and triggered by the 2005 Kashmir earthquake: rockfall to rock avalanches. Geophys Res Abstr 9:06376

    Google Scholar 

  • Dussauge C, Grasso J, Helmstetter A (2003) Statistical analysis of rockfall volume distributions: implications for rockfall dynamics. J Geophys Res 108:2286. doi:10.1029/2001JB000650

    Article  Google Scholar 

  • Fabbri A, Ghisetti F, Vezzani L (1980) The Peloritani-Calabria range and the Gioia basin in the Calabrian arc (Southern Italy): relationships between land and marine data. Geol Romana 19:131–150

    Google Scholar 

  • Ferranti L, Antonioli F, Mauz B, Amorosi A, Dai Pra G, Mastronuzzi G, Monaco C, Orrù P, Pappalardo M, Radtke U, Renda P, Romano P, Sansò P, Verrubbi V (2006) Markers of the last interglacial sea-level high stand along the coast of Italy: tectonic implications. Quat Int 145:30–54

    Article  Google Scholar 

  • Ferranti L, Monaco C, Morelli D, Antonioli F, Maschio L (2008) Holocene activity of the Scilla Fault, Southern Calabria: insights from coastal morphological and structural investigations. Tectonophysics 453:74–93. doi:10.1016/j.tecto.2007.05.006

    Article  Google Scholar 

  • Goswami R, Mitchell NC, Argnani A, Brocklehurst SH (2014) Geomorphology of the western Ionian Sea between Sicily and Calabria, Italy. Geo-Mar Lett 34:419–433. doi:10.1007/s00367-014-0374-2

    Article  Google Scholar 

  • Guarnieri P, Pirrotta C (2008) The response of drainage basins to the late Quaternary tectonics in the Sicilian side of the Messina Strait (NE Sicily). Geomorphology 95:260–273

    Article  Google Scholar 

  • Guthrie RH, Evans SG (2004a) Analysis of landslide frequencies and characteristics in a natural system, coastal British Columbia. Earth Surf Process Landf 26:1321–1339. doi:10.1002/esp.1095

    Article  Google Scholar 

  • Guthrie RH, Evans SG (2004b) Magnitude frequency of landslides triggered by a storm event, Loughborough Inlet, British Columbia. Nat Hazards Earth Syst Sci 4:475–483

    Article  Google Scholar 

  • Guthrie RH, Deadman PJ, Cabrera AR, Evans SG (2008) Exploring the magnitude–frequency distribution: a cellular automata model for landslides. Landslides 5:151–159. doi:10.1007/s10346-007-0104-1

    Article  Google Scholar 

  • Guzzetti F, Malamud BD, Turcotte DL, Reichenbach P (2002) Power-law correlations of landslide areas in central Italy. Earth Planet Sci Lett 195:169–183. doi:10.1016/S0012-821X(01)00589-1

    Article  Google Scholar 

  • Guzzetti F, Ardizzone F, Cardinali M, Rossi M, Valigi D (2009) Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth Planet Sci Lett 279:222–229. doi:10.1016/j.epsl.2009.01.005

    Article  Google Scholar 

  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112:42–66. doi:10.1016/j.earscirev.2012.02.001

    Article  Google Scholar 

  • Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34:33–59. doi:10.1029/95RG03287

    Article  Google Scholar 

  • Harbitz CB, Løvholt F, Bungum H (2014) Submarine landslide tsunamis: how extreme and how likely? Nat Hazards 72:1341–1374. doi:10.1007/s11069-013-0681-3

    Article  Google Scholar 

  • Heidarzadeh M, Fu L, Gross F, Chiocci FL, Ridente D, Krastel S (2014) A new possible tectonic source for the Messina tsunami of 1908? EGU Gen Assem Conf Abstr 16:14495

    Google Scholar 

  • Hu G, Yan T, Liu Z, Vanneste M, Dong L (2009) Size distribution of submarine landslides along the middle continental slope of the East China Sea. J Ocean Univ China 8:322–326. doi:10.1007/S11802-009-0322-3

    Article  Google Scholar 

  • Hungr O, Evans SG, Hazzard J (1999) Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia. Can Geotech J 36:224–238. doi:10.1139/t98-106

    Article  Google Scholar 

  • Ioualalen M, Migeon S, Sardoux O (2010) Landslide tsunami vulnerability in the Ligurian Sea: case study of the 1979 October 16 Nice international airport submarine landslide and of identified geological mass failures. J Geophys Res 181(2):724–740. doi:10.1111/j.1365-246X.2010.04572.x

    Google Scholar 

  • Issler D, De Blasio FV, Elverhøi A, Bryn P, Lien R (2005) Scaling behaviour of clay-rich submarine debris flows. Mar Pet Geol 22:187–194. doi:10.1016/j.marpetgeo.2004.10.015

    Article  Google Scholar 

  • Klar A, Aharonov E, Kalderon-Asael B, Katz O (2011) Analytical and observational relations between landslide volume and surface area. J Geophys Res 116:F02001. doi:10.1029/2009JF001604

    Article  Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach R (2004) Landslide inventories and their statistical properties. Earth Surf Process Landf 29:687–711

    Article  Google Scholar 

  • Malinverno A, Ryan WBF (1986) Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 5:227–245. doi:10.1029/TC005i002p00227

    Article  Google Scholar 

  • Micallef A, Berndt C, Masson DG, Stow DAV (2008) Scale invariant characteristics of the Storegga slide and implications for large-scale submarine mass movements. Mar Geol 247:46–60. doi:10.1016/j.margeo.2007.08.003

    Article  Google Scholar 

  • Monaco C, Tortorici L (2000) Active faulting in the Calabrian Arc and eastern Sicily. J Geodyn 29:407–424

    Article  Google Scholar 

  • Moscardelli L, Wood L (2016) Morphometry of mass-transport deposits as a predictive tool. GSA Bull 128:47–80. doi:10.1130/B31221.1

    Google Scholar 

  • Stark CP, Guzzetti F (2009) Landslide rupture and the probability distribution of mobilized debris volumes. J Geophys Res 114:F00A02. doi:10.1029/2008JF001008

    Article  Google Scholar 

  • Stark CP, Hovius N (2001) The characterization of landslide size distributions. Geophys Res Lett 28:1091–1094. doi:10.1029/2000GL008527

    Article  Google Scholar 

  • ten Brink US, Geist EL, Andrews BD (2006) Size distribution of submarine landslides and its implication to tsunami hazard in Puerto Rico. Geophys Res Lett 33:L11307. doi:10.1029/2006GL026125

    Article  Google Scholar 

  • ten Brink US, Barkan R, Andrews BD, Chaytor JD (2009) Size distributions and failure initiation of submarine and subaerial landslides. Earth Planet Sci Lett 287:31–42. doi:10.1016/j.epsl.2009.07.031

    Article  Google Scholar 

  • Tinti S, Armigliato A, Manucci A, Pagnoni G, Zaniboni F, Yalçiner AC, Altinok Y (2006) The generating mechanisms of the August 17, 1999 Izmit bay (Turkey) tsunami: regional (tectonic) and local (mass instabilities) causes. Mar Geol 225:311–330. doi:10.1016/j.margeo.2005.09.010

    Article  Google Scholar 

  • Turcotte DL (1997) Fractals and chaos in geology and geophysics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Urgeles R, Camerlenghi A (2013) Submarine landslides of the Mediterranean Sea: trigger mechanisms, dynamics, and frequency-magnitude distribution. J Geophys Res Earth Surf 118:2600–2618. doi:10.1002/2013JF002720

    Article  Google Scholar 

  • Valensise G, Pantosti D (1992) A 125 Kyr-long geological record of seismic source repeatability: the Messina Straits (southern Italy) and the 1908 earthquake (Ms 7/2). Terra Nov. 4:472–483. doi:10.1111/j.1365-3121.1992.tb00583.x

  • Völker DJ (2010) A simple and efficient GIS tool for volume calculations of submarine landslides. Geo-Mar Lett 30:541–547. doi:10.1007/s00367-009-0176-0

    Article  Google Scholar 

  • Vuong QH (1989) Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57:307–333. doi:10.2307/1912557

    Article  Google Scholar 

  • Zaniboni F, Armigliato A, Pagnoni G, Tinti S (2014) Continental margins as a source of tsunami hazard: the 1977 Gioia Tauro (Italy) landslide–tsunami investigated through numerical modeling. Mar Geol 357:210–217

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Italian MaGIC and RITMARE projects, and by the Spanish projects MOWER (CTM2012-39599-C03), FAUCES (CTM2015-65461-C2-1-R) and Eurofleets2 project LGT GIOIA 77. The comments of one anonymous reviewer and the editors are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Casas.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with third parties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casas, D., Chiocci, F., Casalbore, D. et al. Magnitude-frequency distribution of submarine landslides in the Gioia Basin (southern Tyrrhenian Sea). Geo-Mar Lett 36, 405–414 (2016). https://doi.org/10.1007/s00367-016-0458-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-016-0458-2

Keywords

Navigation