Skip to main content
Log in

A closed advancing-layer method with connectivity optimization-based mesh movement for viscous mesh generation

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A new closed advancing-layer method for generating high-aspect-ratio elements in the boundary-layer (BL) region is presented. This approach utilizes a recent connectivity optimization-based moving mesh strategy for deforming the volume mesh as the BL is inflated. It handles very efficiently BL front collision and produces a natural smooth anisotropic blending between colliding layers. Moreover, it provides a robust strategy to couple unstructured anisotropic mesh adaptation and high-aspect-ratio elements pseudo-structured BL meshes. The proposed method is directly compared to a well-established open advancing-layer method. Results for typical aerospace configurations are presented that provide a clear comparison between both methods as well as the effectiveness of the connectivity optimization-based moving mesh strategy. They show that the closed method yields similar results in terms of mesh quality and efficiency, and that the considered moving mesh strategy is an efficient and effective method for deforming the unstructured volume mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alauzet F (2012) Contributions aux méthodes numériques pour l’adaptation de maillage et le maillage mobile. Université Pierre et Marie Curie, Paris VI, Paris, France, Habilitation à Diriger des Recherches

  2. Alauzet F (2014) A changing-topology moving mesh technique for large displacement. Eng Comp 30(2):175–200

    Article  Google Scholar 

  3. Alauzet F, Loseille A (2010) High order sonic boom modeling by adaptive methods. J Comput Phys 229:561–593

    Article  MATH  MathSciNet  Google Scholar 

  4. Alauzet F, Mehrenberger M (2010) P1-conservative solution interpolation on unstructured triangular meshes. Int J Numer Meth Eng 84(13):1552–1588

    Article  MATH  MathSciNet  Google Scholar 

  5. Aubry R, Löhner R (2009) Generation of viscous grids at ridges and corners. Int J Numer Meth Eng 77:1247–1289

    Article  MATH  Google Scholar 

  6. Baker T, Cavallo P (1999) Dynamic adaptation for deforming tetrahedral meshes. AIAA J 19:2699–3253

    Google Scholar 

  7. Bottasso C, Detomi D (2002) A procedure for tetrahedral boundary layer mesh generation. Eng Comput 18:66–79

    Article  MATH  Google Scholar 

  8. Dobrzynski C, Frey P (2008) Anisotropic Delaunay mesh adaptation for unsteady simulations. In: Proceedings of the 17th international meshing roundtable, pp. 177–194. Springer, Berlin

  9. Frey P, Alauzet F (2005) Anisotropic mesh adaptation for CFD computations. Comput Methods Appl Mech Eng 194(48–49):5068–5082

    Article  MATH  MathSciNet  Google Scholar 

  10. Frey P, George P (2008) Mesh generation. In: Application to finite elements, 2nd edn. ISTE Ltd, Wiley, New York

  11. Garimella R, Shephard M (2000) Boundary layer mesh generation fro viscous flow simulations. Int J Numer Meth Fluids 49:193–218

    Article  MATH  Google Scholar 

  12. George P, Hecht F, Saltel E (1991) Automatic mesh generator with specified boundary. Comput Methods Appl Mech Eng 92:269–288

    Article  MATH  MathSciNet  Google Scholar 

  13. Hassan O, Morgan K, Probert E, Peraire J (1996) Unstructured tetrahedral mesh generation for three-dimensional viscous flows. Int J Numer Meth Eng 39:549–567

    Article  MATH  Google Scholar 

  14. Ito Y, Nakahashi, K (2002) Unstructured mesh generation for viscous flow computations. In: Proceedings of the 11th international meshing roundtable, pp 367–377

  15. Löhner R (1999) Generation of unstructured grids suitable for RANS calculations. In: 37th AIAA aerospace sciences meeting

  16. Löhner R, Parikh P (1988) Three-dimensional grid generation by the advancing front method. Int J Numer Meth Fluids 9:1135–1149

    Article  Google Scholar 

  17. Loseille A, Dervieux A, Alauzet F (2010) Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations. J Comput Phys 229:2866–2897

    Article  MATH  MathSciNet  Google Scholar 

  18. Loseille A, Löhner R (2010) Adaptive anisotropic simulations in aerodynamics. In: 48th AIAA aerospace sciences meeting. AIAA Paper 2010-169, Orlando, FL

  19. Loseille A, Löhner R (2011) Boundary layer mesh generation and adaptivity. In: 49th AIAA aerospace sciences meeting. AIAA Paper 2011-894, Orlando, FL

  20. Marcum D (1995) Generation of unstructured grids for viscous flow applications. In: 33th AIAA aerospace sciences meeting

  21. Marcum D (1996) Adaptive unstructured grid generation for viscous flow applications. AIAA J 34(8):2440–2443

    Article  MATH  Google Scholar 

  22. Marcum D (1998) Unstructured grid generation using automatic point insertion and local reconnection. In: Thompson JF, Soni B, Weatherill NP (eds) The handbook of grid generation, chap 18, pp 1–31. CRC Press, New York

  23. Marcum D, Alauzet F (2013) Unstructured mesh generation using advancing layers and metric-based transition. In: 21th AIAA computational fluid dynamics conference., AIAA PaperSan Diego, CA, USA, pp 2013–2710

  24. Marcum D, Alauzet F, Marechal L (2011) Bloom: a closed advancing-layer boundary-layer mesh generator. Internal report, INRIA

  25. Marcum D, Weatherill N (1995) Unstructured grid generation using iterative point insertion and local reconnection. AIAA J 33(9):1619–1625

    Article  MATH  Google Scholar 

  26. Pirzadeh S (1994) Viscous unstructured three dimensional grids by the advancing-layers method. In: 32th AIAA aerospace sciences meeting

  27. Sharov D, Nakahashi K (1998) Hybrid prismatic/tetrahedral grid generation for viscous flow applications. AIAA J 36(2):157–162

    Article  MATH  Google Scholar 

  28. Yang Z, Mavriplis D (2007) Higher-order time integration schemes for aeroelastic applications on unstructured meshes. AIAA J 45(1):138–150

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Alauzet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alauzet, F., Marcum, D. A closed advancing-layer method with connectivity optimization-based mesh movement for viscous mesh generation. Engineering with Computers 31, 545–560 (2015). https://doi.org/10.1007/s00366-014-0385-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-014-0385-7

Keywords

Navigation