Skip to main content
Log in

Approximation and Orthogonality in Sobolev Spaces on a Triangle

  • Published:
Constructive Approximation Aims and scope

Abstract

Approximation by polynomials on a triangle is studied in the Sobolev space \(W_2^r\) that consists of functions whose derivatives of up to r-th order have bounded \(L^2\) norm. The first part aims at understanding the orthogonal structure in the Sobolev space on the triangle, which requires explicit construction of an inner product that involves derivatives and its associated orthogonal polynomials, so that the projection operators of the corresponding Fourier orthogonal expansion commute with partial derivatives. The second part establishes the sharp estimate for the error of polynomial approximation in \(W_2^r\), when \(r = 1\) and \(r=2\), where the polynomials of approximation are the partial sums of the Fourier expansions in orthogonal polynomials of the Sobolev space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions, vol. 9. Dover Publ, New York (1970)

    MATH  Google Scholar 

  2. Alfaro, M., Pérez, T.E., Piñar, M.A., Rezola, M.L.: Sobolev orthogonal polynomials: the discrete-continuous case. Methods Appl. Anal. 6, 593–616 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Alfaro, M., de Morales, M.Á., Rezola, M.L.: Orthogonality of the Jacobi polynomials with negative integer parameters. J. Comput. Appl. Math. 145, 379–386 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aktaş, R., Xu, Y.: Sobolev orthogonal polynomials on a simplex. International Mathematics Research Notices IMRN 2013, no. 13, pp. 3087–3131

  5. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  6. Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38, 67–86 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dai, F., Xu, Y.: Approximation Theory and Harmonics Analysis on Spheres and Balls. Springer, New York (2013)

    Book  MATH  Google Scholar 

  8. Dunkl, C.F.: Orthogonal polynomials with symmetry of order three. Can. J. Math. 36, 685–717 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables, Encyclopedia of Mathematics and its Applications, vol. 155. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  10. Guo, B.Y., Shen, J., Wang, L.L.: Optimal spectral-Galerkin methods using generalized Jacobi polynomials. J. Sci. Comput. 27, 305–322 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, B.Y., Shen, J., Wang, L.L.: Generalized Jacobi polynomials/functions and applications to spectral methods. Appl. Numer. Math. 59, 1011–1028 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Iliev, P., Xu, Y.: Connection coefficients of classical orthogonal polynomials of several variables. Adv. Math. arXiv:1506.04682

  13. Kroó, A., Lubinsky, D.S.: Christoffel functions and universality in the bulk for multivariate orthogonal polynomials. Can. J. Math. 65, 600–620 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kopotun, K.: A note on simultaneous approximation in \(L_p[-1,1]\) (\(1\le p <\infty \)). Analysis 15, 151–158 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, H., Shen, J.: Optimal error estimates in Jacobi-weighted Sobolev spaces for polynomial approximations on the triangle. Math. Comput. 79, 1621–1646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, H., Xu, Y.: Spectral approximation on the unit ball. SIAM J. Numer. Anal. 52, 2647–2675 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marcellán, F., Xu, Y.: On Sobolev orthogonal polynomials. Expo. Math. 33, 308–352 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Szegő, G., Orthogonal Polynomials, Fourth edition. American Mathematical Society Colloquium Publications, vol. 23. American Mathematical Society, Providence, RI (1975)

  19. Totik, V.: Polynomial approximation on polytopes. Mem. Am. Math. Soc. 232(1091), vi\(+112\) (2014). doi:10.1090/memo/1091

  20. Xu, Y.: Weighted approximation of functions on the unit sphere. Const. Approx. 21, 1–28 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. Huiyuan Li for helpful discussions in early stage of this work, and thanks two anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Xu.

Additional information

Communicated by Edward B. Saff.

The author was supported in part by NSF Grant DMS-1510296.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y. Approximation and Orthogonality in Sobolev Spaces on a Triangle. Constr Approx 46, 349–434 (2017). https://doi.org/10.1007/s00365-017-9377-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-017-9377-3

Keywords

Mathematics Subject Classification

Navigation