Skip to main content
Log in

On Sharp Constants in Bernstein–Nikolskii Inequalities

  • Published:
Constructive Approximation Aims and scope

Abstract

Let \({\mathcal T}_n\) be the set of all trigonometric polynomials of degree at most n, and let \(B_1\) be the set of all entire functions of exponential type at most 1. We discuss limit relations between the sharp constants in the Bernstein–Nikolskii inequalities defined by

$$\begin{aligned}&A_{p,q,n}^{(s)}:=n^{-s-1/p+1/q}\sup _{T\in {\mathcal T}_n{\setminus }\{0\}}\frac{\Vert T^{(s)}\Vert _{L_q([-\pi ,\pi ])}}{\Vert T\Vert _{L_p([-\pi ,\pi ])}},\quad \\&D_{p,q}^{(s)}:= \sup _{f\in (B_1\cap L_p({\mathbb R})){\setminus }\{0\}}\frac{\Vert f^{(s)}\Vert _{L_q({\mathbb R})}}{\Vert f\Vert _{L_p({\mathbb R})}}, \end{aligned}$$

where \(0<p<q\le {\infty }\) and \(s=0,\,1,\ldots .\) We prove that

$$\begin{aligned} D_{p,q}^{(s)}\le \liminf _{n\rightarrow {\infty }}A_{p,q,n}^{(s)},\qquad D_{p,{\infty }}^{(s)}= \lim _{n\rightarrow {\infty }}A_{p,{\infty },n}^{(s)}. \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer, N.I.: Lectures on the Theory of Approximation, 2nd edn. Nauka, Moscow (1965). (in Russian)

    MATH  Google Scholar 

  2. Alzer, H.: On an inequality of H. Minc and L. Sathre. J. Math. Anal. Appl. 179, 396–402 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arestov, V.V.: On integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR, Ser. Mat. 45, 3–22 (in Russian); English transl. in Math. USSR-Izv. 18(1982), 1–17 (1981)

  4. Badkov, V.M.: Asymptotic and extremal properties of orthogonal polynomials with singularities in the weight, Trudy Mat. Inst. Steklov 198 (1992), 41–88 (in Russian); English transl. in. Proc. Steklov Inst. Math. 198(1), 37–82 (1994)

  5. Babenko, V.F., Kofanov, V.A., Pichugov, S.A.: Inequalities for norms of intermediate derivatives of periodic functions and their applications. East J. Approx. 3, 351–376 (1997)

    MathSciNet  MATH  Google Scholar 

  6. Babenko, V.F. Kofanov, V.A., Pichugov, S.A.: Comparison of rearrangement and Kolmogorov–Nagy type inequalities for periodic functions. In: Bojanov, B. (ed.) Approx. Theory: A volume dedicated to Blagovest Sendov, Darba, Sofia, 2002, 24–53

  7. Babenko, V.F., Korneichuk, N.P., Kofanov, V.A., Pichugov, S.A.: Inequalities for Derivatives and their Applications. Naukova Dumka, Kiev (2003). (in Russian)

    Google Scholar 

  8. Bennett, G., Jameson, G.: Monotonic averages of convex functions. J. Math. Anal. Appl. 252, 410–430 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bernstein, S.N.: Sur l’ordre de la meilleure approximation des fonctions continues par des polynomes de degré donné. Mém. Acad. R. Belg. 4(1), 1–104 (1912)

    MathSciNet  MATH  Google Scholar 

  10. Bernstein, S.N.: Sur une propriété des fonctions entiéres. Comptes Rendus 176, 1603–1605 (1923)

    MATH  Google Scholar 

  11. Bernstein, S.N.: On the best approximation of continuous functions on the whole real axis by entire functions of given degree, III. Dokl. Akad. Nauk SSSR 52, 565–568 (1946). (in Russian)

    Google Scholar 

  12. Boas, R.P.: Entire Functions. Academic Press, New York (1954)

    MATH  Google Scholar 

  13. Constantine, G.M., Savits, T.H.: A multivariate Faà di Bruno formula with applications. Trans. Am. Math. Soc. 348(2), 503–520 (1996)

    Article  MATH  Google Scholar 

  14. Ditzian, Z., Prymak, A.: Nikolskii inequalities for Lorentz spaces. Rocky Mt. J. Math. 40(1), 209–223 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Garsia, A., Rodemich, E., Rumsey, H.: On some extremal positive definite functions. J. Math. Mech. 18(9), 805–834 (1969)

    MathSciNet  MATH  Google Scholar 

  16. Gorbachev, D.V.: An integral problem of Konyagin and the \((C,L)\)-constants of Nikolskii, Teor. Funk., Trudy IMM UrO RAN, 11, no. 2 (2005), 72–91 (in Russian); English transl. In: Proc. Steklov Inst. Math., Function Theory, Suppl. 2 (2005), S117–S138

  17. Hörmander, L.: A new proof and a generalization of an inequality of Bohr. Math. Scand. 2, 33–45 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hörmander, L.: Some inequalities for functions of exponential type. Math. Scand. 3, 21–27 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kofanov, V.A.: Comparison of rearrangements and inequalities of various metrics. East J. Approx. 8, 311–325 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Kofanov, V.A.: Sharp inequalities of Bernstein and Kolmogorov type. East J. Approx. 11, 131–145 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Levin, E., Lubinsky, D.: \(L_p\) Chritoffel functions, \(L_p\) universality, and Paley-Wiener spaces. J. D’Analyse Math. 125, 243–283 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Levin, E., Lubinsky, D.: Asymptotic behavior of Nikolskii constants for polynomials on the unit circle. Comput. Methods Funct. Theory 15, 459–468 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lewitan, B.M.: Über eine Verallgemeinerung der Ungleichungen von S. Bernstein und H. Bohr. Dokl. Akad. Nauk SSSR 15, 169–172 (1937)

    MATH  Google Scholar 

  24. Nikolskii, S.M.: Approximation of Functions of Several Variables and Imbedding Theorems, Nauka, Moscow, 1969 (in Russian); English edition: Die Grundlehren der Mathematischen Wissenschaften, vol. 205. Springer, New York (1975)

  25. Nursultanov, E., Tikhonov, S.: A sharp Remez inequality for trigonometric polynomials. Constr. Approx. 38(1), 101–132 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rahman, Q.I., Schmeisser, G.: \(L^p\) inequalities for entire functions of exponential type. Trans. Am. Math. Soc. 320, 91–103 (1990)

    MathSciNet  MATH  Google Scholar 

  27. Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  28. Riesz, M.: Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome. Jahresber. Dtsch. Math. Ver. 23, 354–368 (1914)

    MATH  Google Scholar 

  29. Roman, S.: The formula of Faa di Bruno. Am. Math. Mon. 87, 805–809 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  30. Taikov, L.V.: A group of extremal problems for trigonometric polynomials. Uspekhi Mat. Nauk 20(3), 205–211 (1965). (in Russian)

    MathSciNet  MATH  Google Scholar 

  31. Taikov, L.V.: On the best approximation of Dirichlet kernels, Mat. Zametki, 53 , 116–121 (in Russian); English transl. in Math. Notes 53(1993), 640–643 (1993)

  32. Timan, A.F.: Theory of Approximation of Functions of a Real Variable. Pergamon Press, New York (1963)

    MATH  Google Scholar 

  33. Zygmund, A.: A remark on conjugate series. Proc. London Math. Soc. 34, 392–400 (1932)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Vladimir Kofanov for the provision of references. In addition, we thank the anonymous referees for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael I. Ganzburg.

Additional information

Communicated by: Vladimir N. Temlyakov.

The second author’s research was partially supported by MTM 2014-59174-P, 2014 SGR 289, and by the Alexander von Humboldt Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganzburg, M.I., Tikhonov, S.Y. On Sharp Constants in Bernstein–Nikolskii Inequalities. Constr Approx 45, 449–466 (2017). https://doi.org/10.1007/s00365-016-9363-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-016-9363-1

Keywords

Mathematics Subject Classification

Navigation