Skip to main content
Log in

Csiszar’s ϕ-divergences for testing the order in a Markov chain

  • Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Assume that a sequence of observations

$$x_1 ,...,x_{n + r} $$
(1)

can be treated as the sample values of a Markov chain of order r or less (chain in which the dependence extends over r+1 consecutive variables only), and consider the problem of testing the hypothesis H o that a chain of order r — 1 will be sufficient on the basis of the tools given by the Statistical Information Theory: ϕ—Divergences. More precisely, if

$$p_{\alpha _1 ,...,\alpha _r :\alpha _{r + 1} } $$
(2)

denotes the transition probability for a r th order Markov chain, the hypothesis to be tested is

$$H_0 :p_{\alpha _1 ,...,\alpha _r :\alpha _{r + 1} } = p_{\alpha _2 ,...,\alpha _r :\alpha _{r + 1} } ,a_i \in \left\{ {1,...,s} \right\}, i = 1,..., r + 1$$
(3)

The tests given in this paper, for the first time, will have as a particular case the likelihood ratio test and the test based on the chi-squared statistic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali, S. M. and S. D. Silvey (1966). A general class of coefficient of divergence of one distribution from another. J. of Royal Statistical Society, Ser. B, 286, 131–142.

    MathSciNet  Google Scholar 

  2. Anderson, T.W. and Goodman, LA. (1957). Statistical inference about Markov chains. Ann. Math. Stat., 28, 89–110

    Article  MATH  MathSciNet  Google Scholar 

  3. Azlarov, T.A. and A. A. Narkhuzhaev (1987). Asymptotic analysis of some chi-square type tests for Markov chains. Dokl Akad. Nauk. SSSR, 7, 3–5.

    MathSciNet  Google Scholar 

  4. Azlarov, T.A. and A. A. Narkhuzhaev (1992). On asymptotic behavior of distributions of some statistics for Markov chains. Theory Probab. Appl., 37, 117–119.

    Article  MATH  MathSciNet  Google Scholar 

  5. Basawa, I.V. and B.L.S. Prakasa Rao (1980). Statistical Inference for Stochastic Processes. Academic Press, London.

    MATH  Google Scholar 

  6. Billingsley, P. (1961a). Statistical methods in Markov chains. Ann. Math. Statist., 32, 13–39.

    Google Scholar 

  7. Billingsley, P. (1961b). Statistical Inference for Markov Processes. The University of Chicago Press.

  8. Csiszar, I. (1963). Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizitat von Markoffschen Ketten. Publications of the Mathematical Institute of Hungarian Academy of Sciences, Ser. A, 8, 85–108.

    MATH  MathSciNet  Google Scholar 

  9. Cressie, N. and Read, T.R. C. (1984). Multinomial goodness of fit tests. J. of Royal Statistical Society, Ser. B, 46, 440–464.

    MATH  MathSciNet  Google Scholar 

  10. Cox, C. (1984). An elementary introduction to maximum likelihood estimation for multinomial models: Birh’s theorem and the delta method. The American Statistician, 38, 283–287.

    Article  MathSciNet  Google Scholar 

  11. Ferguson, T.S. (1996). A Course in Large Sample Theory. Chapman and Hall.

  12. Fraser, D.A.S. (1957). Nonparametric Methods in Statistics. Wiley, New York.

    MATH  Google Scholar 

  13. Hoel, P. G. (1954). A test for Markov chains. Biometrika, 14, 430–433.

    MathSciNet  Google Scholar 

  14. Ivchenko, G. and Y. Medvedev (1990). Mathematical Statistics. Mir, Moscow.

    Google Scholar 

  15. Menendez, M.L., Morales, D., Pardo, L. and Zografos, K. (1999). Statistical inference for finite Markov chains based on Divergences. Statistics and Probability Letters, 41, 9–17.

    Article  MATH  MathSciNet  Google Scholar 

  16. Mirvaliev, M. and A.A. Narkhuzhaev (1990). On a chi-square test for homogeneous Markov chains. Izv. Akad. Nauk. Uzb. SSR, Ser. Fiz.-Mat., 1, 28–32.

    Google Scholar 

  17. Morales, D., Pardo, L. and I. Vajda (1995). Asymptotic divergence of estimates of discrete distributions. J. of Statistical Planning and Inference, 48, 347–369.

    Article  MATH  MathSciNet  Google Scholar 

  18. Read, T.R. C. and N.A.C. Cressie (1988). Goodness-of-fit Statistics for Discrete Multivariate Data. Springer, Berlin.

    MATH  Google Scholar 

  19. Roussas, G.G. (1979). Asymptotic distribution of the log-likelihood function for stochastic processes. Z. Wair. Verw. Geb., 47, 31–46.

    Article  MATH  MathSciNet  Google Scholar 

  20. Salicrii, M., Morales, D., Menendez, M.L. and Pardo, L. (1994). On the applications of divergence type measures in testing statistical hypotheses. J. of Multivariate Analysis, 51, 372–391.

    Article  Google Scholar 

  21. Zografos, K., Ferentinos, K. and T. Papaioannou (1990). ϕ-divergence statistics: sampling properties and multinomial goodness of fit and divergence tests”. Commun. Statist. (Theory and Meth.), 19(5), 1785–1802.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by the DGES grant No. PB96-0635

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menéndez, M.L., Pardo, J.A. & Pardo, L. Csiszar’s ϕ-divergences for testing the order in a Markov chain. Statistical Papers 42, 313–328 (2001). https://doi.org/10.1007/s003620100061

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003620100061

Key words and phrases

Navigation