Skip to main content
Log in

Consistent validation of gray-level thresholding image segmentation algorithms based on machine learning classifiers

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

We propose a Machine Learning approach for Image Validation (MaLIV) to rank the performances of two or more outputs obtained from different gray-level thresholding image segmentation algorithms. MaLIV utilizes machine learning classifiers to rank automatically the outputs of different segmentation algorithms accounting for both the computational complexity of the validation experiment and for the robustness of its results. The proposed method resorts to subsampling to find Fisher consistent estimates of validity measures obtained from a sample of pixels of extremely-reduced size. To this purpose, subsampling is combined with three alternative approaches: learning curves, asymptotic regression and convergence in probability. Results of experiments involving the validation of five images segmented through thirteen different algorithms are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aria M, D’Ambrosio A, Iorio C, Siciliano R, Cozza V (2018) Dynamic recursive tree-based partitioning for malignant melanoma identification in skin lesion dermoscopic images. Stat Pap. https://doi.org/10.1007/s00362-018-0997-x

  • Bertail P, Politis DN, Romano JP (1999) On subsampling estimators with unknown rate of convergence. J Am Stat Assoc 94(446):569–579

    MathSciNet  MATH  Google Scholar 

  • Billingsley P (2013) Convergence of probability measures. Wiley, New York

    MATH  Google Scholar 

  • Chan TF, Shen JJ (2005) Image processing and analysis: variational, PDE, wavelet, and stochastic methods, vol 94. Siam, Philadelphia

    MATH  Google Scholar 

  • Cortes C, Jackel LD, Solla SA, Vapnik V, Denker JS (1994) Learning curves: asymptotic values and rate of convergence. In: Advances in neural information processing systems, pp 327–334

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302

    Google Scholar 

  • Doyle W (1962) Operations useful for similarity-invariant pattern recognition. J ACM (JACM) 9(2):259–267

    MATH  Google Scholar 

  • Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci 1:54–75

    MathSciNet  MATH  Google Scholar 

  • Efron B, Tibshirani R (1997) Improvements on cross-validation: the 632+ bootstrap method. J Am Stat Assoc 92(438):548–560

    MathSciNet  MATH  Google Scholar 

  • El-Samie FA (2012) Image restoration. Lap Lambert Academic Publishing GmbH KG, Saarbrucken ISBN 9783847333531

    Google Scholar 

  • Emond EJ, Mason DW (2002) A new rank correlation coefficient with application to the consensus ranking problem. J Multi-Criteria Decis Anal 11(1):17–28

    MATH  Google Scholar 

  • Glasbey CA (1993) An analysis of histogram-based thresholding algorithms. CVGIP 55(6):532–537

    Google Scholar 

  • Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, Tsuhan Chen (2018) Recent advances in convolutional neural networks. Pattern Recognit 77:354–377. https://doi.org/10.1016/j.patcog.2017.10.013

    Article  Google Scholar 

  • Trevor Hastie, Robert Tibshirani, Jerome Friedman (2009) The elements of statistical learning, 2nd edn. Springer, New York. https://doi.org/10.1007/b94608_7

    Book  MATH  Google Scholar 

  • Huang L-K, Wang M-JJ (1995) Image thresholding by minimizing the measures of fuzziness. Pattern Recognit 28(1):41–51

    Google Scholar 

  • Iosifescu DV, Shenton ME, Warfield SK, Kikinis R, Dengler J, Jolesz FA, McCarley RW (1997) An automated registration algorithm for measuring mri subcortical brain structures. Neuroimage 6(1):13–25

    Google Scholar 

  • Jaccard P (1912) The distribution of the flora in the alpine zone. New Phytol 11(2):37–50

    Google Scholar 

  • Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vis Graph Image Process 29(3):273–285

    Google Scholar 

  • Kato Z, Pong T-C (2006) A markov random field image segmentation model for color textured images. Image Vis Comput 24(10):1103–1114. https://doi.org/10.1016/j.imavis.2006.03.005

    Article  Google Scholar 

  • Kato Z, Zerubia J (2012) Markov random fields in image segmentation. Now Publishers Inc., Hanover, MA

    MATH  Google Scholar 

  • Kendall MG (1955) Rank correlation methods. Hafner Publishing Co., Oxford

    MATH  Google Scholar 

  • Kittler J, Illingworth J (1986) Minimum error thresholding. Pattern Recognit 19(1):41–47

    Google Scholar 

  • Korzynska A, Roszkowiak L, Lopez C, Bosch R, Witkowski L, Lejeune M (2013) Validation of various adaptive threshold methods of segmentation applied to follicular lymphoma digital images stained with 3,3’-diaminobenzidine&haematoxylin. Diagn Pathol 8(1):48

    Google Scholar 

  • Krzanowski WJ, Hand DJ (2009) ROC curves for continuous data. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Lawrence S, Giles CL, Tsoi AC, Back AD (1997) Face recognition: a convolutional neural-network approach. IEEE Trans Neural Netw 8(1):98–113. https://doi.org/10.1109/72.554195 ISSN 1045-9227

    Article  Google Scholar 

  • Lehmann EL (2004) Elements of large-sample theory. Springer, New York

    Google Scholar 

  • Lehmussola A, Ruusuvuori P, Selinummi J, Huttunen H, Yli-Harja O (2007) Computational framework for simulating fluorescence microscope images with cell populations. IEEE Trans Med Imaging 26(7):1010–1016

    Google Scholar 

  • Lehmussola A, Ruusuvuori P, Selinummi J, Rajala T, Yli-Harja O (2008) Synthetic images of high-throughput microscopy for validation of image analysis methods. Proc IEEE 96(8):1348–1360

    Google Scholar 

  • Li CH, Tam PK-S (1998) An iterative algorithm for minimum cross entropy thresholding. Pattern Recognit Lett 19(8):771–776

    MATH  Google Scholar 

  • Li CH, Lee CK (1993) Minimum cross entropy thresholding. Pattern Recognit 26(4):617–625

    Google Scholar 

  • Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94 ISSN 1573-1405

    Article  Google Scholar 

  • Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Computer vision, 2001. ICCV 2001. Proceedings. Eighth IEEE international conference on. vol 2. IEEE, pp 416–423

  • Moré JJ (1978) The levenberg-marquardt algorithm: implementation and theory. In: Numerical analysis. Springer, pp 105–116

  • Narkhede HP (2013) Review of image segmentation techniques. Int J Sci Mod Eng 1(8):54–61

    Google Scholar 

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    MathSciNet  Google Scholar 

  • Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recognit 26(9):1277–1294

    Google Scholar 

  • Patrangenaru V, Paige R, Yao KD, Qiu M, Lester D (2016) Projective shape analysis of contours and finite 3d configurations from digital camera images. Stat Pap 57(4):1017–1040

    MathSciNet  MATH  Google Scholar 

  • Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2(1):315–337

    Google Scholar 

  • Picard RR, Cook RD (1984) Cross-validation of regression models. J Am Stat Assoc 79(387):575–583

    MathSciNet  MATH  Google Scholar 

  • Politis DN, Romano JP, Wolf M (1999) Subsampling. Springer, New York

    MATH  Google Scholar 

  • Politis DN, Romano JP, Michael Wolf (2001) On the asymptotic theory of subsampling. Stat Sin 11:1105–1124

    MathSciNet  MATH  Google Scholar 

  • Prewitt JMS, Mendelsohn ML (1966) The analysis of cell images. Ann N Y Acad Sci 128(3):1035–1053

    Google Scholar 

  • Reed TR, Dubuf JMH (1993) A review of recent texture segmentation and feature extraction techniques. CVGIP 57(3):359–372

    Google Scholar 

  • Ridler TW, Calvard S et al (1978) Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybern 8(8):630–632

    Google Scholar 

  • Sammut C, Webb GI (2011) Encyclopedia of machine learning. Springer, New York

    MATH  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676

    Google Scholar 

  • Seung HS, Sompolinsky H, Tishby N (1992) Statistical mechanics of learning from examples. Phys Rev A 45(8):6056

    MathSciNet  Google Scholar 

  • Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13(1):146–166

    Google Scholar 

  • Shanbhag AG (1994) Utilization of information measure as a means of image thresholding. CVGIP 56(5):414–419

    Google Scholar 

  • Shattuck DW, Prasad G, Mirza M, Narr KL, Toga AW (2009) Online resource for validation of brain segmentation methods. NeuroImage 45(2):431–439

    Google Scholar 

  • Sonka M, Hlavac V, Boyle R (2014) Image processing, analysis, and machine vision. Cengage Learning

  • Stevens WL (1951) Asymptotic regression. Biometrics 7:247–267

    MathSciNet  Google Scholar 

  • Tsai W-H et al (1985) Moment-preserving thresholding-a new approach. Comput Vis Graph Image Process 29(3):377–393

    Google Scholar 

  • Udupa JK, Leblanc VR, Zhuge Y, Imielinska C, Schmidt H, Currie LM, Hirsch BE, Woodburn J (2006) A framework for evaluating image segmentation algorithms. Comput Med Imaging Graph 30(2):75–87

    Google Scholar 

  • Warfield SK, Mulkern RV, Winalski CS, Jolesz FA, Kikinis R (2000) An image processing strategy for the quantification and visualization of exercise-induced muscle mri signal enhancement. J Magn Reson Imaging 11(5):525–531

    Google Scholar 

  • Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921

    Google Scholar 

  • Zack GW, Rogers WE, Latt SA (1977) Automatic measurement of sister chromatid exchange frequency. J Histochem Cytochem 25(7):741–753

    Google Scholar 

  • Zou KH, Warfield SK, Aditya Bharatha, Tempany CMC, Kaus Michael R, Haker SJ, Wells WM, Jolesz FA, Ron Kikinis (2004) Statistical validation of image segmentation quality based on a spatial overlap index: scientific reports. Acad Radiol 11(2):178–189. https://doi.org/10.1016/S1076-6332(03)00671-8

    Article  Google Scholar 

Download references

Acknowledgements

The research activities of Luca Frigau described in this paper have been conducted within the R&D project “Cagliari2020” partially funded by the Italian University and Research Ministry (grant No. MIUR_PON04a2_00381). The research activities of Luca Frigau, Claudio Conversano and Francesco Mola are supported by the Regione Autonoma della Sardegna under the Grant Pacchetti Integrati di Agevolazione Industria, Artigianato e Servizi, PIA – 2013 No. 282/13 and by the Italian University and Research Ministry (Progetto Dipartimenti di Eccellenza 2018–2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Conversano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frigau, L., Conversano, C. & Mola, F. Consistent validation of gray-level thresholding image segmentation algorithms based on machine learning classifiers. Stat Papers 62, 1363–1386 (2021). https://doi.org/10.1007/s00362-019-01138-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-019-01138-3

Keywords

Navigation