Skip to main content
Log in

Fourier inference for stochastic volatility models with heavy-tailed innovations

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

We consider estimation of stochastic volatility models which are driven by a heavy-tailed innovation distribution. Exploiting the simple structure of the characteristic function of suitably transformed observations we propose an estimator which minimizes a weighted \(L_2\)-type distance between the theoretical characteristic function of these observations and an empirical counterpart. A related goodness-of-fit test is also proposed. Monte-Carlo results are presented. The procedures are also applied to real data from the financial markets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abanto-Valle CA, Bandyopadhyay D, Lachos VH, Enriquez I (2010) Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions. Comput Stat Data Anal 54:2883–2898

    Article  MathSciNet  MATH  Google Scholar 

  • Andersson J (2001) The normal inverse Gaussian stochastic volatility model. J Bus Econ Stat 19:44–54

    Article  MathSciNet  Google Scholar 

  • Asai M, McAleer M, Yu J (2006) Multivariate stochastic volatility models: a review. Econom Rev 25:145–175

    Article  MATH  Google Scholar 

  • Barndorff-Nielsen OE (1977) Exponentially decreasing distributions for the logarithm of particle size. Proc R Soc Lond Ser A 353:401–409

    Article  Google Scholar 

  • Barndorff-Nielsen OE (1997) Normal inverse Gaussian distributions and stochastic volatility modelling. Scand J Stat 24:1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Boscher H, Fronk EV, Pigeot I (2000) Forecasting interest rates volatilities by GARCH(1,1) and stochastic volatility models. Stat Pap 41:409–422

    Article  MATH  Google Scholar 

  • Chib S, Omori Y, Asai M (2009) Multivariate stochastic volatility. In: Andersen TG et al (eds) Handbook of financial time series. Springer, Berlin, pp 365–400

    Chapter  Google Scholar 

  • Curto JD, Pinto JC, Tavares GN (2009) Modeling stock markets’ volatility using GARCH models with normal, student’s \(t\) and stable Paretian distributions. Stat Pap 50:311–321

    Article  MathSciNet  MATH  Google Scholar 

  • Figueroa-López JE, Lancette SR, Lee K, Mi Y (2012) Estimation of NIG and VG models for high frequency financial data. In: Viens FG et al (eds) Handbook of modeling high-frequency data in Finance. Wiley, New Jersey, pp 3–26

    Google Scholar 

  • Forsberg L (2002) On the normal inverse gaussian distribution in modeling volatility in the financial markets, PhD Dissertation, Uppsala University

  • Geske R, Torous W (1991) Skewness, kurtosis, and black-scholes option mispricing. Stat Pap 32:299–309

    Article  Google Scholar 

  • Giacomini R, Politis DN, White H (2013) A warp-speed method for conducting monte carlo experiments involving bootstrap estimators. Econom Theory 29:567–589

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen PR, Huang Z, Shek HH (2012) Realized GARCH: a joint model for returns and realized measures of volatility. J Appl Econom 27:877–906

    Article  MathSciNet  Google Scholar 

  • Harvey AC, Ruiz E, Shephard N (1994) Multivariate stochastic variance models. Rev Econ Stud 61:247–264

    Article  MATH  Google Scholar 

  • Jiménez-Gamero MD (2014) On the empirical characteristic function process of the residuals in GARCH models and applications. Test 23:409–432

    Article  MathSciNet  MATH  Google Scholar 

  • Jungbacker B, Koopman SJ (2009) Parameter estimation and practical aspects of modeling stochastic volatility. In: Anderson TG et al (eds) Handbook of financial time series. Springer, Berlin, pp 313–344

    Chapter  Google Scholar 

  • Knight JL, Satchell SE, Yu J (2002) Estimation of the stochastic volatility model by the empirical characteristic function method. Austral New Zeal J Stat 44:319–335

    Article  MathSciNet  MATH  Google Scholar 

  • Knight JL, Yu J (2002) Empirical characteristic function in time series estimation. Econom Theory 18:691–721

    Article  MathSciNet  MATH  Google Scholar 

  • Kotchoni R (2012) Applications of the characteristic function-based continuum GMM in finance. Comput Stat Data Anal 56:3599–3622

    Article  MathSciNet  MATH  Google Scholar 

  • Langrock R, MacDonald IL, Zucchini W (2012) Some nonstandard stochastic volatility models and their estimation using structured hidden Markov models. J Empir. Financ 19:147–161

    Article  Google Scholar 

  • Liesenfeld R, Jung RC (2000) Stochastic volatility models: conditional normality versus heavy-tailed distributions. J Appl Econom 15:137–160

    Article  Google Scholar 

  • Lin LC, Lee S, Guo M (2013) Goodness-of-fit tests for stochastic volatility models. J Multivar Anal 116:473–498

    Article  MathSciNet  MATH  Google Scholar 

  • Meintanis SG, Taufer E (2012) Inference procedures for stable-Paretian stochastic volatility models. Math Comput Model 55:1199–1212

    Article  MathSciNet  MATH  Google Scholar 

  • Nagel H, Schöbel R (1999) Volatility and GMM-Monte Carlo studies and empirical estimations. Stat Pap 40:297–321

    Article  MathSciNet  MATH  Google Scholar 

  • Ngatchou-Wandji J, Harel M (2013) A Cramér-von Mises test for symmetry of ther error distribution in asymptotically stationary stochastic models. Stat Inferace Stoch Process 16:207–236

    Article  MATH  Google Scholar 

  • Qin R, Tian Z, Jin H (2011) Truncating estimation for the change in stochastic trend with heavy-tailed innovations. Stat Pap 52:203–217

    Article  MathSciNet  MATH  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing, Statistical Computing, Vienna, Austria

  • Renault E (2009) Moment-based estimation of stochastic volatility models. In: Andersen TG et al (eds) Handbook of financial time series. Springer, Berlin, pp 269–311

    Chapter  Google Scholar 

  • Scott D, Yang Dong C (2012) VarianceGamma: the variance gamma distribution, R package version 0.3-1

  • Seneta E (2004) Fitting the variance-gamma model to financial data. Stoch Methods Appl 41:177–187

    MathSciNet  MATH  Google Scholar 

  • Stojanović VS, Popović BC, Milovanović GV (2016) The split-SV model. Comput Stat Data Anal 100:560–581

    Article  MathSciNet  MATH  Google Scholar 

  • Taufer E, Leonenko N, Bee M (2011) Characteristic function estimation of Orstein–Uhlenbeck-based stochastic volatility models. Comput Stat Data Anal 55:2525–2539

    Article  MATH  Google Scholar 

  • Varadhan R, Gilbert PD (2009) BB: an R package for solving a large system of nonlinear equations and for optimizing a high-dimensional nonlinear objective function. J Stat Softw 32(4):1–26

    Article  Google Scholar 

  • Wuertz D, Rmetrics core team members (2013) fBasics: Rmetrics—markets and basic statistics, R package version 3010.86

  • Yu J (2004) Empirical characteristic function estimation and its applications. Econom Theory 18:691–721

    Google Scholar 

  • Yu J, Meyer R (2006) Multivariate stochastic volatility models: Bayesian estimation and model comparison. Econom Rev 25:361–384

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research of Simos Meintanis was partially supported by grant Nr. 11699 of the Special Account for Research Grants (E\(\Lambda \)KE) of the National and Kapodistrian University of Athens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Ebner.

Additional information

On sabbatical leave from the University of Athens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebner, B., Klar, B. & Meintanis, S.G. Fourier inference for stochastic volatility models with heavy-tailed innovations. Stat Papers 59, 1043–1060 (2018). https://doi.org/10.1007/s00362-016-0803-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-016-0803-6

Keywords

Navigation