Skip to main content

Advertisement

Log in

A new method to build spatio-temporal covariance functions: analysis of ozone data

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Statistical analysis of natural phenomena with spatial and temporal correlations requires the specification of the correlation structure via a covariance function. A separable spatio-temporal covariance function is usually used for the ease of application. Nonetheless, the separability of the spatio-temporal covariance function can be unrealistic in many settings, where it is required to use a non-separable spatio-temporal covariance function. In this paper, the role of Stieltjes transformation in the construction of non-separable spatio-temporal covariance function is investigated. Then, structural copula function is applied to construct a family of non-separable spatio-temporal covariance function. Afterwards, it is proved that this family of covariance functions does not possess any dimple which exists in some Gneiting’s models. Finally, a modified genetic algorithm is applied to explore the spatio-temporal correlation structure of Ozone data in Tehran, Iran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Proceedings of 2nd international symposium on information theory, pp 267–281

  • Auffarth B (2010) Clustering by a genetic algorithm with biased mutation operator. IEEE, 18–23

  • Bajpai P, Kumar M (2008) Genetic algorithm: an approach to solve global optimisation problems. Indian J Comput Sci Eng 1(3):199–206

    Google Scholar 

  • Berg C (2008) Stieltjes–Pick–Bernstein–Schoenberg and their connection to complete monotonicity. In: Mateu J, Porcu E (eds) Positive definite functions from Schoenberg to space–time challenges. Universitat Jaume I, Castellon de la Plana

    Google Scholar 

  • Cressie N, Huang H (1999) Classes of non-separable, spatio-temporal stationary covariance functions. J Am Stat Assoc 94:1330–1340

    Article  MathSciNet  MATH  Google Scholar 

  • De Iaco S, Myers D, Posa D (2001) Space–time analysis using a general product-sum model. Stat Probab Lett 52(1):21–28

    Article  MathSciNet  MATH  Google Scholar 

  • De Iaco S, Myers DE, Posa D (2002) Nonseparable space–time covariance models: some parametric families. Math Geol 34:23–42

    Article  MathSciNet  MATH  Google Scholar 

  • Feller W (1966) An introduction to probability theory and its applications. Wiley, New York

    MATH  Google Scholar 

  • Fuentes M, Chen L, Davis JM (2007) A class of nonseparable and nonstationary spatial temporal covariance functions. Environmetrics 19:487–507

    Article  MathSciNet  Google Scholar 

  • Gneiting T (2002) Nonseparable, stationary covariance functions for space–time data. J Am Stat Assoc 97:590–600

    Article  MathSciNet  MATH  Google Scholar 

  • Gneiting T, Genton M, Guttorp P (2007) Geostatistical space–time models, stationarity, separability and full symmetry. In: Finkenstadt B, Held L, Isham V (eds) Statistical methods for spatio-temporal systems. Chapman and Hall, Boca Raton, pp 151–175

    Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search. Optimisation, and machine learning. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  • Haupt RL, Haupt SE (2004) Practical genetic algorithms, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor

    Google Scholar 

  • Joe H (1997) Multivariate models and dependence concepts. Chapman and Hall, New York

    Book  MATH  Google Scholar 

  • Kent J, Mohammadzadeh M, Mosammam A (2011) The dimple in gneiting’s spatio temporal covariance model. Biometrika 98:489–494

    Article  MathSciNet  MATH  Google Scholar 

  • Kolovos A, Christakos G, Hristopulos D, Serre M (2004) Methods for generating non-separable spatio-temporal covariance models with potential environmental applications. Adv Water Resour 27:815–830

    Article  Google Scholar 

  • Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge

    MATH  Google Scholar 

  • Kumar A, Jani NN (2010) Network design problem using genetic algorithm-an empirical study on mutation operator. Glob J Comput Sci Technol 10:77–82

    Google Scholar 

  • Lai D (2010) Box–Cox transformation for spatial linear models: a study on lattice data. Stat Pap 51:853–864

    Article  MathSciNet  MATH  Google Scholar 

  • Ma C (2002) Spatio-temporal covariance functions generated by mixtures. Math Geol 34:965–975

    Article  MathSciNet  MATH  Google Scholar 

  • Ma C (2003) Families of spatio-temporal stationary covariance models. J Stat Plan Inference 116:489–501

    Article  MathSciNet  MATH  Google Scholar 

  • Ma C (2005a) Spatio-temporal variograms and covariance models. Adv Appl Probab 37:706–725

    Article  MathSciNet  MATH  Google Scholar 

  • Ma C (2005b) Linear combinations of space–time covariance functions and variograms. IEEE Trans Signal Process 53(3):857–864

    Article  MathSciNet  Google Scholar 

  • Marzuki K, Ibrahim MF, Yusof R, Abdul Rahman RZ (2011) Optimisation of Fuzzy model using genetic algorithm for process control application. J Frankl Inst 348(7):1717–1737

    Article  MATH  Google Scholar 

  • Michiels F, De Schepper A (2012) How to improve the fit of archimedean copulas by means of transforms. Stat Pap 53(2):345–355

    Article  MathSciNet  MATH  Google Scholar 

  • Miller KS, Samko SG (2001) Completely Monotonic Functions. Integral Transforms and Special Functions. 12(4):389–402

    Article  MathSciNet  MATH  Google Scholar 

  • Minaei-Bidgoli B, Punch WF (2003) Algorithms using genetic, for data mining optimisation in an educational web-based system. In: GECCO Genetic and Evolutionary Computation Conference, (2003). Springer, New York, 2252–2263

  • Montoya J, Diaz-Frances E, Sprott DA (2009) On a criticism of the profile likelihood function. Stat Pap 50:195–202

    Article  MathSciNet  MATH  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Paciorek CJ, Lipshitz B, Zhuo W, Prabhat Kaufman, CG, Thomas RC (2013) Parallelizing Gaussian Process Calculations in R. arXiv:1305.4886. http://arxiv.org/abs/1305.4886

  • Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) The bees algorithm. Technical Note Manufacturing Engineering Centre, Cardiff University, UK

  • Porcu E, Mateu J (2007) Mixture-based modelling for space–time data. Environmetrics 18:285–302

    Article  MathSciNet  Google Scholar 

  • Porcu E, Mateu J, Saura F (2008) New classes of covariance and spectral density functions for spatio-temporal modelling. Stoch Environ Res Risk assess 22:65–79

    Article  MathSciNet  MATH  Google Scholar 

  • Porcu E, Mateu J, Christakos G (2009) Quasi-arithmetic means of covariance functions with potential applications to space–time data. J Multivar Anal 100(8):1830–1844

    Article  MathSciNet  MATH  Google Scholar 

  • Rodrigues A, Diggle P (2010) A class of convolution-based models for spatio-temporal processes with non-separable covariance structure. Scand J Stat 37(4):553–567

    Article  MathSciNet  MATH  Google Scholar 

  • Schmitt LM (2001) Theory of genetic algorithms. Theor Comput Sci 259:1–61

    Article  MathSciNet  MATH  Google Scholar 

  • Sklar A (1959) Fonctions de Repartition a n Dimensions et Leurs Marges. Publications de l’Institut de Statistique de l’Universite de Paris 8:229–231

    MathSciNet  MATH  Google Scholar 

  • Stein ML (2005a) Space–time covariance functions. J Am Stat Assoc 100:310–321

    Article  MathSciNet  MATH  Google Scholar 

  • Stein ML (2005b) Statistical methods for regular monitoring data. J R Stat Soc B 67:667–687

    Article  MathSciNet  MATH  Google Scholar 

  • Tezuka M, Munetomo M, Kiyoshi Akama K (2007) Genetic algorithm to optimise fitness function with samplling error and its application to financial optimisation problem. Evolutionary computation in dynamic and uncertain environments, 417–434

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Mohammadzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidi, M., Mohammadzadeh, M. A new method to build spatio-temporal covariance functions: analysis of ozone data. Stat Papers 57, 689–703 (2016). https://doi.org/10.1007/s00362-015-0674-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-015-0674-2

Keywords

Navigation