Skip to main content
Log in

Equalities between OLSE, BLUE and BLUP in the linear model

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

We consider equalities between the ordinary least squares estimator (\(\mathrm {OLSE} \)), the best linear unbiased estimator (\(\mathrm {BLUE} \)) and the best linear unbiased predictor (\(\mathrm {BLUP} \)) in the general linear model \(\{ \mathbf y , \mathbf X \varvec{\beta }, \mathbf V \}\) extended with the new unobservable future value \( \mathbf y _{*}\) of the response whose expectation is \( \mathbf X _{*}\varvec{\beta }\). Our aim is to provide some new insight and new proofs for the equalities under consideration. We also collect together various expressions, without rank assumptions, for the \(\mathrm {BLUP} \) and provide new results giving upper bounds for the Euclidean norm of the difference between the \(\mathrm {BLUP} ( \mathbf y _{*})\) and \(\mathrm {BLUE} ( \mathbf X _{*}\varvec{\beta })\) and between the \(\mathrm {BLUP} ( \mathbf y _{*})\) and \(\mathrm {OLSE} ( \mathbf X _{*}\varvec{\beta })\). A remark is made on the application to small area estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alderman H, Babita M, Demombynes G, Makhatha N, Özler B (2003) How low can you go? Combining census and survey data for mapping poverty in South Africa. J Afr Econ 11:169–200

    Article  Google Scholar 

  • Amarasinghe U, Madar S, Anputhas M (2005) Spatial clustering of rural poverty and food insecurity in Sri Lanka. Food Policy 30:493–509

    Google Scholar 

  • Baksalary JK, Kala R (1980) A new bound for the Euclidean norm of the difference between the least squares and the best linear unbiased estimators. Ann Stat 8:679–681

    Article  MATH  MathSciNet  Google Scholar 

  • Baksalary JK, Kala R (1981) Simple least squares estimation versus best linear unbiased prediction. J Stat Plan Inference 5:147–151

    Article  MATH  MathSciNet  Google Scholar 

  • Baksalary JK, Mathew T (1990) Rank invariance criterion and its application to the unified theory of least squares. Linear Algebra Appl 127:393–401

    Article  MATH  MathSciNet  Google Scholar 

  • Baksalary JK, Puntanen S, Styan GPH (1990) A property of the dispersion matrix of the best linear unbiased estimator in the general Gauss-Markov model. Sankhyā Ser A 52:279–296

    MATH  MathSciNet  Google Scholar 

  • Baksalary OM, Trenkler G (2009) A projector oriented approach to the best linear unbiased estimator. Stat Pap 50:721–733

    Google Scholar 

  • Baksalary OM, Trenkler G (2011) Between OLSE and BLUE. Aust NZ J Stat 53:289–303

    Article  MathSciNet  Google Scholar 

  • Ben-Israel A, Greville TNE (2003) Generalized inverses: theory and applications, 2nd edn. Springer, New York

    Google Scholar 

  • Christensen R (2011) Plane answers to complex questions: the theory of linear models, 4th edn. Springer, New York

    Book  Google Scholar 

  • Davidson R, MacKinnon JG (2004) Econometric theory and methods. Oxford University Press, New York

    Google Scholar 

  • Elbers C, Lanjouw JO, Lanjouw P (2003) Micro-level estimation of poverty and inequality. Econometrica 71:355–364

    Article  MATH  Google Scholar 

  • Elbers C, Lanjouw JO, Lanjouw P, Leite PG (2004) Poverty and inequality in Brazil: new estimates from combined PPV-PNAD data. The World Bank. Vrije Universiteit, Amsterdam

  • Elian SN (2000) Simple forms of the best linear unbiased predictor in the general linear regression model. Am Stat 54:25–28

    MathSciNet  Google Scholar 

  • Farrow A, Larrea C, Hyman G, Lema G (2005) Exploring the spatial variation of food poverty in Ecuador. Food Policy 30:510–531

    Article  Google Scholar 

  • Goldberger AS (1962) Best linear unbiased prediction in the generalized linear regression model. J Am Stat Assoc 58:369–375

    Article  MathSciNet  Google Scholar 

  • Groß J (2004) The general Gauss-Markov model with possibly singular dispersion matrix. Stat Pap 45: 311–336

    Google Scholar 

  • Harville DA (1997) Matrix algebra from a statistician’s perspective. Springer, New York

    Book  MATH  Google Scholar 

  • Haslett SJ, Isidro MC, Jones G (2010) Comparison of survey regression techniques in the context of small area estimation of poverty. Surv Methodol 36:157–170 (Statistics Canada, Catalogue No. 12–001-X)

    Google Scholar 

  • Haslett SJ, Jones G (2006) Small area estimation of poverty, caloric intake and malnutrition in Nepal. Nepal Central Bureau of Statistics / World Food Programme, United Nations / World Bank, Kathmandu, p 184 ISBN 999337018-5

    Google Scholar 

  • Haslett SJ, Jones G (2010) Small area estimation of poverty: the aid industry standard and its alternatives. Aust NZ J Stat 52:341–362

    Article  MathSciNet  Google Scholar 

  • Haslett SJ, Puntanen S (2010a) A note on the equality of the BLUPs for new observations under two linear models. Acta et Commentationes Universitatis Tartuensis de Mathematica 14:27–33

    MATH  MathSciNet  Google Scholar 

  • Haslett SJ, Puntanen S (2010b) Equality of BLUEs or BLUPs under two linear models using stochastic restrictions. Stat Pap 51:465–475

    Article  MATH  MathSciNet  Google Scholar 

  • Haslett SJ, Puntanen S (2011) On the equality of the BLUPs under two linear mixed models. Metrika 74:381–395

    Article  MATH  MathSciNet  Google Scholar 

  • Hauke J, Markiewicz A, Puntanen S (2012) Comparing the BLUEs under two linear models. Commun Stat Theory Methods 41:2405–2418

    Article  MATH  MathSciNet  Google Scholar 

  • Horn RA, Olkin I (1996) When does \(A^{*}A=B^{*}B\) and why does one want to know? Am Math Mon 103:470–482

    Article  MATH  MathSciNet  Google Scholar 

  • Isotalo J, Puntanen S (2006) Linear prediction sufficiency for new observations in the general Gauss-Markov model. Commun Stat Theory Methods 35:1011–1023

    Article  MATH  MathSciNet  Google Scholar 

  • Isotalo J, Puntanen S, Styan GPH (2008) A useful matrix decomposition and its statistical applications in linear regression. Commun Stat Theory Methods 37:1436–1457

    Article  MATH  MathSciNet  Google Scholar 

  • Kam S-P, Hossain M, Bose ML, Villano LS (2005) Spatial patterns of rural poverty and their relationship with welfare-influencing factors in Bangladesh. Food Policy 30:551–567

    Article  Google Scholar 

  • Kristjanson P, Radeny M, Baltenweck I, Ogutu J, Notenbaert A (2005) Livelihood mapping and poverty correlates at a meso-level in Kenya. Food Policy 30:568–583

    Article  Google Scholar 

  • Liu Y (2009) On equality of ordinary least squares estimator, best linear unbiased estimator and best linear unbiased predictor in the general linear model. J Stat Plan Inf 139:1522–1529

    Article  MATH  Google Scholar 

  • Mäkinen J (2000) Bounds for the difference between a linear unbiased estimate and the best linear unbiased estimate. Phys Chem Earth Part A 25:693–698

    Article  Google Scholar 

  • Mäkinen J (2002) A bound for the Euclidean norm of the difference between the best linear unbiased estimator and a linear unbiased estimator. J Geodesy 76:317–322

    Article  MATH  Google Scholar 

  • McElroy FW (1967) A necessary and sufficient condition that ordinary least-squares estimators be best linear unbiased. J Am Stat Assoc 62:1302–1304

    Article  MathSciNet  Google Scholar 

  • Minot N, Baulch B (2005) Spatial patterns of poverty in Vietnam and their implications for policy. Food Policy 30:461–475

    Article  Google Scholar 

  • Molina I, Rao JNK (2010) Small area estimation of poverty indicators. Can J Stat 38:369–385

    Article  MATH  MathSciNet  Google Scholar 

  • Pordzik PR (2012) A bound for the Euclidean distance between restricted and unrestricted estimators of parametric functions in the general linear model. Stat Pap 53:299–304

    Article  MATH  MathSciNet  Google Scholar 

  • Puntanen S, Styan GPH (1989) The equality of the ordinary least squares estimator and the best linear unbiased estimator (with discussion). Am Stat 43:151–161 (Commented by Kempthorne O on pp 161–162 and by Searle SR on pp 162–163, reply by the authors on p 164)

  • Puntanen S, Styan GPH, Isotalo J (2011) Matrix tricks for linear statistical models: our personal top twenty. Springer, Heidelberg

    Book  Google Scholar 

  • Puntanen S, Styan GPH, Werner HJ (2000) A comment on the article “Simple forms of the best linear unbiased predictor in the general linear regression model” by SN Elian (Am Stat 54:25–28). Lett Editor Am Stat 54:327–328

    Google Scholar 

  • Rao CR (1967) Least squares theory using an estimated dispersion matrix and its application to measurement of signals. In: Le Cam LM, Neyman J (eds) Proceedings of the fifth Berkeley symposium on mathematical statistics and probability: Berkeley, California, 1965/1966, vol 1. University of California Press, Berkeley, pp 355–372

    Google Scholar 

  • Rao CR, Mitra SK (1971) Generalized inverse of matrices and its applications. Wiley, New York

    MATH  Google Scholar 

  • Sengupta D, Jammalamadaka SR (2003) Linear models: an integrated approach. World Scientific, River Edge

  • Watson GS (1972) Prediction and the efficiency of least squares. Biometrika 59:91–98

    Article  MATH  MathSciNet  Google Scholar 

  • Zyskind G (1967) On canonical forms, non-negative covariance matrices and best and simple least squares linear estimators in linear models. Ann Math Stat 38:1092–1109

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Sincere thanks go to two anonymous referees whose comments greatly improved the manuscript. The work of Y. Liu was supported by NSFC under grant 11271259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simo Puntanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haslett, S.J., Isotalo, J., Liu, Y. et al. Equalities between OLSE, BLUE and BLUP in the linear model. Stat Papers 55, 543–561 (2014). https://doi.org/10.1007/s00362-013-0500-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-013-0500-7

Keywords

Mathematics Subject Classication (2000)

Navigation