Skip to main content
Log in

Local influence for functional comparative calibration models with replicated data

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

We investigate local influence analysis in functional comparative calibration models with replicated data. A method for selecting appropriate perturbation schemes based on the expected Fisher information matrix with respect to the perturbation vector is proposed. It is shown that arbitrarily perturbing these models may result in misleading inference about the influential subjects. First-order influence measures for identifying the correct influential subjects and replicates on corrected score estimators are defined. We introduce different perturbation schemes including perturbation of subjects and replicates on the corrected likelihood function and obtain the density of the perturbed model from which the methodology is based. Particularly, three perturbation of variances schemes could be a better way to handle badly modeled subjects or replicates. Two real data sets are analyzed to illustrate the use of our local influence measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnett VD (1969) Simultaneous pairwise linear structural relationships. Biometrics 25: 129–142

    Article  Google Scholar 

  • Beckman RJ, Nachtsheim CJ, Cook RD (1987) Diagnostic for mixed model analysis. Technometrics 29: 413–426

    MATH  MathSciNet  Google Scholar 

  • Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8: 135–160

    Article  Google Scholar 

  • Carstensen B, Gurrin L, Ekstrom C (2012) MethComp: functions for analysis of method comparison studies. R package version 1.15

  • Cook RD (1986) Assessment of local influence (with discussion). J R Stat Soc B 48: 133–169

    MATH  Google Scholar 

  • de Castro M, Bolfarine H, Castilho MV (2006) Consistent estimation and testing in comparing analytical bias models. Environmetrics 17: 167–182

    Article  MathSciNet  Google Scholar 

  • de Castro M, Galea-Rojas M, Bolfarine H (2007) Local influence assessment in heteroscedastic measurement error models. Comput Stat Data Anal 52: 1132–1142

    Article  MATH  Google Scholar 

  • Galea-Rojas M, Bolfarine H, de Castro M (2002) Local influence in comparative calibration models. Biom J 1: 59–81

    Article  Google Scholar 

  • Giménez P, Bolfarine H (1997) Corrected score functions in classical error-in-variables and incidental parameters models. Aust J Stat 39: 325–344

    Article  MATH  Google Scholar 

  • Giménez P, Bolfarine H (2000) Comparing consistent estimators in comparative calibration models. J Stat Plan Inference 86: 143–155

    Article  MATH  Google Scholar 

  • Giménez P, Patat ML (2005) Estimation in comparative calibration models with replicate mesurement. Stat Probab Lett 71: 155–164

    Article  MATH  Google Scholar 

  • Grubbs FE (1973) Errors of measurement, precision, accuracy, and the statistical comparison of measuring instruments. Technometrics 15: 53–66

    Article  Google Scholar 

  • Haber M (2008) A general approach to evaluating agreement between two observers or methods of measurement from quantitative data with replicated measurements. Stat Methods Med Res 17: 151–169

    Article  MATH  MathSciNet  Google Scholar 

  • Kendall MG, Stuart A (1979) The advanced theory of statistics, vol 2, 4th edn. Hafner, New York

  • Kimura DK (1992) Functional comparative calibration using an EM algorithm. Biometrics 48: 1263–1271

    Article  Google Scholar 

  • Lachos VH, Vilca F, Galea M (2007) Influence diagnostics for the Grubbs’s model. Stat Papers 48: 419–436

    Article  MATH  MathSciNet  Google Scholar 

  • Lachos VH, Angolini T, Abanto-Valle CA (2011) On estimation and local influence analysis for measurement errors models under heavy-tailed distributions. Stat Papers 52: 567–590

    Article  MATH  MathSciNet  Google Scholar 

  • Lawrance AJ (1988) Regression transformation diagnostics using local influence. J Am Stat Assoc 83: 1067–1072

    Article  MathSciNet  Google Scholar 

  • Lee AH, Zhao Y (1996) Assessing local influence in measurement error models. Biom J 38: 829–841

    Article  MATH  Google Scholar 

  • Lee SY, Xu L (2004) Influence analysis of nonlinear mixed-effects models. Comput Stat Data Anal 45: 321–341

    Article  MATH  MathSciNet  Google Scholar 

  • Lesaffre E, Verbeke G (1998) Local influence in linear mixed models. Biometrics 54: 570–582

    Article  MATH  Google Scholar 

  • Lord FM, Novick MR (1968) Statistical theories of mental test scores. Addison-Wesley, Reading

  • Luong A, Mak T (1991) Robust estimation in a linear functional relationship model. Commun Stat 20: 721–733

    Article  MathSciNet  Google Scholar 

  • Nakamura T (1990) Corrected score function for errors-in-variables models: methodology and application to generalized linear models. Biometrika 77: 127–137

    Article  MATH  MathSciNet  Google Scholar 

  • Poon WY, Poon YS (1999) Conformal normal curvature and assessment of local influence. J R Stat Soc B 61: 51–61

    Article  MATH  MathSciNet  Google Scholar 

  • Rasekh AR (2001) Ridge estimation in functional measurement error models. Ann DE L’ISUP Publ Inst Stat Univ Paris XXXXV(2–3):47–59

  • Rasekh AR (2006) Local influence in measurement error models with ridge estimate. Comput Stat Data Anal 50: 2822–2834

    Article  MATH  MathSciNet  Google Scholar 

  • Rasekh AR, Fieller NRJ (2003) Influence functions in functional measurement error models with replicated data. Statistics 37: 169–178

    Article  MATH  MathSciNet  Google Scholar 

  • Ripley BD, Thompson M (1987) Regression techniques for the detection of analytical bias. Analyst 112: 377–383

    Article  Google Scholar 

  • Riu J, Rius FX (1996) Assessing the accuracy of analytical methods using linear regression with errors in both axes. Anal Chem 68: 1851–1857

    Article  Google Scholar 

  • Shi L (1997) Local influence in principal components analysis. Biometrika 84: 175–186

    Article  MATH  MathSciNet  Google Scholar 

  • Stefanski LA (1989) Unbiased estimation of a linear function of a normal mean with application to measurement error models. Commun Stat A 18: 4335–4358

    Article  MATH  MathSciNet  Google Scholar 

  • Theobald CM, Mallison JR (1978) Comparative calibration, linear structural relationship and congeneric measurment. Biometrics 34: 39–45

    Article  Google Scholar 

  • Thomas W, Cook RD (1990) Assessing influence on predictions from generalized linear models. Technometrics 32: 59–65

    Article  MathSciNet  Google Scholar 

  • Wellman JM, Gunst RF (1991) Influence diagnostics for linear measurement error models. Biometrika 78: 373–380

    Article  MathSciNet  Google Scholar 

  • Williams EJ (1969) Regression methods in calibration problems. Bull Int Stat Inst 43: 17–28

    MATH  Google Scholar 

  • Wu X, Luo Z (1993) Second-order approach to local influence. J R Stat Soc B 55: 929–936

    MATH  Google Scholar 

  • Zhao Y, Lee AH, Hui YV (1994) Influence diagnostics for generalized linear measurement error models. Biometrics 50: 1117–1128

    Article  MATH  Google Scholar 

  • Zhao Y, Lee AH (1995) Assessment of influence in non-linear measurement error models. J Appl Stat 22: 215–225

    Article  MathSciNet  Google Scholar 

  • Zhong XP, Wei BC, Fung WK (2000) Influence analysis for linear measurement error models. Ann Inst Stat Math 52: 367–379

    Article  MATH  MathSciNet  Google Scholar 

  • Zhu H, Lee S (2001) Local influence for incomplete-data models. J R Stat Soc B 63: 111–126

    Article  MATH  MathSciNet  Google Scholar 

  • Zhu HZ, Ibrahim JG, Lee S, Zhang H (2007) Perturbation selection and influence measures in local influence analysis. Ann Stat 35: 2565–2588

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Giménez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giménez, P., Patat, M.L. Local influence for functional comparative calibration models with replicated data. Stat Papers 55, 431–454 (2014). https://doi.org/10.1007/s00362-012-0489-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-012-0489-3

Keywords

Navigation