Skip to main content
Log in

On runs of length exceeding a threshold: normal approximation

  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

Run statistics denoting number of runs and sum of run lengths are defined on binary sequences and their asymptotic normality is established by a simple unified way for Bernoulli sequences. All the considered statistics share a common feature; they refer to runs of length exceeding a specific length (a threshold). Asymptotic results of associated statistics denoting run lengths and waiting times are derived as well. Specific probabilities of the examined statistics are used in applications in the fields of system reliability and molecular biology. The study is illustrated by an extensive numerical experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal M, Sen K, Mohan P (2007) GERT analysis of m-consecutive-k-out-of-n systems. IEEE Trans Reliab 56: 26–34

    Article  Google Scholar 

  • Antzoulakos DL, Bersimis S, Koutras MV (2003) On the distribution of the total number of run lengths. Ann Inst Stat Math 55: 865–884

    Article  MathSciNet  MATH  Google Scholar 

  • Balakrishnan N, Koutras MV (2002) Runs and scans with applications. Wiley, New York

    MATH  Google Scholar 

  • Binswanger K, Embrechts P (1994) Longest runs in coin tossing. Insur Math Econ 15: 139–149

    Article  MathSciNet  MATH  Google Scholar 

  • Boutsikas MV, Koutras MV (2002) Modeling claim exceedances over thresholds. Insur Math Econ 30: 67–83

    Article  MathSciNet  MATH  Google Scholar 

  • De Moivre A (1756) The doctrine of chance, 3rd edn. Chelsea, New York

    Google Scholar 

  • Demir S, Eryilmaz S (2008) Run statistics in a sequence of arbitrarily dependent binary trials. Stat Pap. doi:10.1007/s00362-008-0191-7

  • Eryilmaz S (2005) On the distribution and expectation of success runs in nonhomogeneous Markov dependent trials. Stat Pap 46: 117–128

    Article  MathSciNet  MATH  Google Scholar 

  • Eryilmaz S (2006) A note on runs of geometrically distributed random variables. Discret Math 306: 1765–1770

    Article  MathSciNet  MATH  Google Scholar 

  • Eryilmaz S (2007) Extension of runs to the continuous-valued sequences. Stat Probab Lett 77: 383–388

    Article  MathSciNet  MATH  Google Scholar 

  • Eryilmaz S (2009) Mean success run length. J Korean Stat Soc 38: 65–71

    Article  MathSciNet  Google Scholar 

  • Eryilmaz S, Demir S (2007) Success runs in a sequence of exchangeable binary trials. J Stat Plan Inference 137: 2954–2963

    Article  MathSciNet  MATH  Google Scholar 

  • Feller W (1968) An introduction to probability theory and its applications, vol 1, 3rd edn. Wiley, New York

    Google Scholar 

  • Fu JC, Lou WYW (2003) Distribution theory of runs and patterns and its applications: a finite Markov imbedding approach. World Scientific, New Jersey

    Book  MATH  Google Scholar 

  • Fu JC, Lou WYW (2007) On the normal approximation for the distribution of the number of simple or compound patterns in a random sequence of multi-state trials. Methodol Comput Appl Probab 9: 195–205

    Article  MathSciNet  MATH  Google Scholar 

  • Fu JC, Lou WYW, Bai ZD, Li G (2002) The exact and limiting distributions for the number of successes in success runs within a sequence of Markov-dependent two-state trials. Ann Inst Stat Math 54: 719–730

    Article  MathSciNet  MATH  Google Scholar 

  • Fu JC, Wang L, Lou WYW (2003) On exact and large deviation approximation for the distribution of the longest run in a sequence of two-state Markov dependent trials. J Appl Probab 40: 346–360

    Article  MathSciNet  MATH  Google Scholar 

  • Godbole AP (1993) Approximate reliabilities of m-consecutive-k-out-of-n: failure systems. Stat Sinica 3: 321–327

    MathSciNet  MATH  Google Scholar 

  • Griffith WS (1986) On consecutive-k-out-of-n failure systems and their generalizations. In: Basu AP (eds) Reliability and quality control. Elsevier, North Holland, pp 157–165

    Google Scholar 

  • Hirano K, Aki S, Kashiwagi N, Kuboki H (1991) On Ling’s binomial and negative binomial distributions of order k. Stat Probab Lett 11: 503–509

    Article  MathSciNet  MATH  Google Scholar 

  • Hoeffding W, Robbins H (1948) The central limit theorem for dependent random variables. Duke Math J 15: 773–780

    Article  MathSciNet  MATH  Google Scholar 

  • Kontoleon JM (1980) Reliability determination of r-successive-out-of-n:F system. IEEE Trans Reliab 29: 437

    Article  MATH  Google Scholar 

  • Koutras MV (2003) Applications of Markov chains to the distribution theory of runs and patterns. In: Shanbhag DN, Rao CR (eds) Handbook of statistics, vol 21. Elsevier, North Holland, pp 431–472

    Google Scholar 

  • Kuo W, Zuo MJ (2003) Optimal reliability modeling: principles and applications. Wiley, New Jersey

    Google Scholar 

  • Ling KD (1988) On binomial distributions of order k. Stat Probab Lett 6: 247–250

    Article  MATH  Google Scholar 

  • Lou WYW (2003) The exact distribution of the k-tuple statistic for sequence homology. Stat Probab Lett 61: 51–59

    Article  MATH  Google Scholar 

  • Makri FS, Philippou AN (1996) Exact reliability formulas for linear and circular m-consecutive-k-out-of-n:F systems. Microelectr Reliab 36: 657–660

    Article  MathSciNet  Google Scholar 

  • Makri FS, Philippou AN (2005) On binomial and circular binomial distributions of order k for ℓ-overlapping success runs of length k. Stat Pap 46: 411–432

    Article  MathSciNet  MATH  Google Scholar 

  • Makri FS, Philippou AN, Psillakis ZM (2007a) Polya, inverse Polya, and circular Polya distributions of order k for ℓ-overlapping success runs. Commun Stat Theory Methods 36: 657–668

    Article  MathSciNet  MATH  Google Scholar 

  • Makri FS, Philippou AN, Psillakis ZM (2007b) Shortest and longest length of success runs in binary sequences. J Stat Plan Inference 137: 2226–2239

    Article  MathSciNet  MATH  Google Scholar 

  • Makri FS, Philippou AN, Psillakis ZM (2007c) Success run statistics defined on an urn model. Adv Appl Probab 39: 991–1019

    Article  MathSciNet  MATH  Google Scholar 

  • Makri FS, Psillakis ZM (1997) Bounds for reliability of k-within connected-(r, s)-out-of-(m, n) failure systems. Microelectr Reliab 37: 1217–1224

    Article  Google Scholar 

  • Martin DE (2005) Distribution of the number of successes in success runs of length at least k in higher-order Markovian sequences. Methodol Comput Appl Probab 7: 543–554

    Article  MathSciNet  MATH  Google Scholar 

  • Mood AM (1940) The distribution theory of runs. Ann Math Stat 11: 367–392

    Article  MathSciNet  MATH  Google Scholar 

  • Muselli M (2000) Useful inequalities for the longest run distribution. Stat Probab Lett 46: 239–249

    Article  MathSciNet  MATH  Google Scholar 

  • Papastavridis S (1990) m-consecutive-k-out-of-n:F systems. IEEE Trans Reliab 39: 386–388

    Article  MATH  Google Scholar 

  • Papastavridis S, Koutras MV (1993) Consecutive-k-out-of-n systems. In: Misra KB (eds) New trends in system reliability evaluation. Elsevier, Amsterdam, pp 228–248

    Google Scholar 

  • Roussas GG (1997) A course in mathematical statistics, 2nd edn. Academic Press, San Diego

    MATH  Google Scholar 

  • Roussas GG (2007) Introduction to probability. Academic Press, San Diego

    MATH  Google Scholar 

  • Scheaffer RL (1990) Introduction to probability and its applications. PWS-KENT Publishing Company, Boston

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frosso S. Makri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makri, F.S., Psillakis, Z.M. On runs of length exceeding a threshold: normal approximation. Stat Papers 52, 531–551 (2011). https://doi.org/10.1007/s00362-009-0268-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-009-0268-y

Keywords

Mathematics Subject Classification (2000)

Navigation