Skip to main content
Log in

Consistent estimation of regression coefficients in ultrastructural measurement error model using stochastic prior information

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

The problem of consistent estimation of regression coefficients in a multivariate linear ultrastructural measurement error model is considered in this article when some additional information on regression coefficients is available a priori. Such additional information is expressible in the form of stochastic linear restrictions. Utilizing stochastic restrictions given a priori, some methodologies are presented to obtain the consistent estimators of regression coefficients under two types of additional information separately, viz., covariance matrix of measurement errors and reliability matrix associated with explanatory variables. The measurement errors are assumed to be not necessarily normally distributed. The asymptotic properties of the proposed estimators are derived and analyzed analytically as well as numerically through a Monte Carlo simulation experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cheng CL, Kukush A (2006) Non-existence of the first moment of the adjusted least squares estimator in multivariate errors-in-variables model. Metrika 64(1): 41–46

    Article  MATH  MathSciNet  Google Scholar 

  • Cheng CL, Ness JW (1991) On the unreplicated ultrastructural model. Biometrika 78: 442–445

    Article  MATH  MathSciNet  Google Scholar 

  • Cheng CL, Ness JW (1999) Statistical regression with measurement errors. Arnold Publishers, London

    Google Scholar 

  • Gruijter DN, Kamp LJTh (2008) Statistical test theory for the behavioral sciences. Chapman & Hall/CRC Press, London/West Palm Beach

    MATH  Google Scholar 

  • Dolby GR (1976) The ultrastructural relation: a synthesis of the functional and structural relations. Biometrika 63: 39–50

    Article  MATH  MathSciNet  Google Scholar 

  • Dunn G (1989) Design and analysis of reliability studies. Oxford University Press, New York

    MATH  Google Scholar 

  • Fuller WA (1987) Measurement error models. Wiley, New York

    Book  MATH  Google Scholar 

  • Gleser LJ (1992) The importance of assessing measurement reliability in multivariate regression. J Am Stat Assoc 87(419): 696–707

    Article  MATH  MathSciNet  Google Scholar 

  • Gleser LJ (1993) Estimators of slopes in linear errors-in-variables regression models when the predictors have known reliability matrix. Stat Probab Lett 17: 113–121

    Article  MATH  MathSciNet  Google Scholar 

  • Rao CR, Rao MB (1998) Matrix algebra and its applications to statistics and econometrics. World Scientific, Singapore

    MATH  Google Scholar 

  • Rao CR, Toutenburg H, Shalabh, Heumann C (2008) Linear models and generalizations: least squares and alternatives, 3rd edn. Springer, New York

    MATH  Google Scholar 

  • Schaffrin B (2006) A note on constrained total least-squares estimation. Linear Algebra Appl 417: 245–258

    Article  MATH  MathSciNet  Google Scholar 

  • Schneeweiss H (1976) Consistent estimation of a regression with errors in the variables. Metrika 23: 101–115

    Article  MathSciNet  Google Scholar 

  • Schneeweiss H (1982) A simple regression model with trend and error in the exogenous variable. In: Deistler M, Fuest E, Schwodiauer G (eds) Games, economic dynamics and time series analysis. Physica-Verlag, Wurzburg, pp 347–358

    Google Scholar 

  • Schneeweiss H (1991) Note on a linear model with errors in the variables and with trend. Stat Papers 32: 261–264

    Article  MathSciNet  Google Scholar 

  • Shalabh (1998) Improved estimation in measurement error models through Stein-rule procedure. J Multivar Anal 67:35–48 (Corrigendum: J Multivar Anal 74:162, 2000)

  • Shalabh (2003) Consistent estimation of coefficients in measurement error models under non-normality. J Multivar Anal 86(2):227–241

    Article  MATH  MathSciNet  Google Scholar 

  • Shalabh, Gleser GL, Rosen O (2004) On the usefulness of the knowledge of error variances in the consistent estimation of an unreplicated ultrastructural model. J Stat Comput Simul 74(6):391–417

    Article  MATH  MathSciNet  Google Scholar 

  • Shalabh, Garg G, Misra N (2007) Restricted regression estimation in measurement error models. Comput Stat Data Anal 52(2):1149–1166

    Article  MATH  MathSciNet  Google Scholar 

  • Srivastava AK, Shalabh (1997a) Consistent estimation for the non-normal ultrastructural model. Stat Probab Lett 34:67–73

    Article  MATH  MathSciNet  Google Scholar 

  • Srivastava AK, Shalabh (1997b) Asymptotic efficiency properties of least squares in an ultrastructural model. Test 6(2):419–431

    Article  MATH  MathSciNet  Google Scholar 

  • Srivastava VK, Tiwari R (1976) Evaluation of expectation of product of stochastic matrices. Scand J Stat 3: 135–138

    MATH  MathSciNet  Google Scholar 

  • Theil H, Goldberger AS (1961) On pure and mixed estimation in econometrics. Int Econ Rev 2: 65–78

    Article  Google Scholar 

  • Toutenburg H (1982) Prior information in linear models. Wiley, New York

    MATH  Google Scholar 

  • Wong MY (1989) Likelihood estimation of a simple linear regression model when both variables have error. Biometrika 78: 141–148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalabh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shalabh, Garg, G. & Misra, N. Consistent estimation of regression coefficients in ultrastructural measurement error model using stochastic prior information. Stat Papers 51, 717–748 (2010). https://doi.org/10.1007/s00362-008-0162-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-008-0162-z

Keywords

Mathematics Subject Classification (2000)

Navigation