Skip to main content
Log in

Testing interaction in some predator–prey populations

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

This paper deals with a testing problem for each of the interaction parameters of the Lotka–Volterra ordinary differential equations system~(ODE). In short, when the rates of birth and death are fixed, we would like to test if each interaction parameter is higher or lower than a fixed reference rate. We choose a statistical model where the actual population sizes are modelled as random perturbations of the solutions to this ODE. By assuming that the random perturbations follow correlated Ornstein–Uhlenbeck processes, we propose the uniformly most powerful test concerning each interaction parameter of the ODE and, we establish the asymptotic properties of the test. Further, we illustrate the suggested test on the Canadian mink–muskrat data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brockwell PJ and Davis RA (1991). Time series: theory and methods, 2nd edn. Springer, New York

    Google Scholar 

  2. Bulmer MG (1974). A statistical analysis of the 10-year cycle in Canada. J Anim Ecol 43: 701–718

    Article  Google Scholar 

  3. Chen Z and Kulperger R (2005). A stochastic competing-species model and ergodicity. J Appl Prob 42(3): 738–753

    Article  MATH  MathSciNet  Google Scholar 

  4. Froda S and Colavita G (2005). Estimating predator–prey systems via ordinary differential equations with closed orbits. Aust NZ J Stat 2: 235–254

    Article  MathSciNet  Google Scholar 

  5. Froda S and Nkurunziza S (2007). Prediction of predator–prey populations modelled by perturbed ODE. J Math Biol 54: 407–451

    Article  MATH  MathSciNet  Google Scholar 

  6. Gard T (1988). Introduction to stochastic differential equations. Marcel Dekker, New York

    MATH  Google Scholar 

  7. Gard CT and Kannan D (1976). On a stochastic differential equation modeling of prey–predator evolution. J Appl Prob 13: 429–443

    Article  MATH  MathSciNet  Google Scholar 

  8. Ginzburg LR and Taneyhill DE (1994). Populations cycles of forest Lepidoptera : a maternal effect hypothesis. J Anim Ecol 63: 79–92

    Article  Google Scholar 

  9. Ginzburg L, Colyvan M (2004) Ecological orbits : how planets move and populations grow. In: Applied biomathematics. Oxford University press, New York

  10. Kendall BE, Briggs CJ, Murdoch WW, Turchin P, ellner SP, McCauley E, Nisbet R and Wood SN (1999). Why do populations cycle? A synthesis of statistical and mechanistic modelling approaches. Ecology 80(6): 1789–1805

    Article  Google Scholar 

  11. Kutoyants AY (2004). Statistical inference for ergodic diffusion processes. Springer, New York

    MATH  Google Scholar 

  12. Lehmann EL and Romano JP (2005). Testing statistical hypotheses, 3rd edn. Springer, Heidelberg

    MATH  Google Scholar 

  13. Lotka AJ (1925). Elements of Physical Biology. Williams and Wilkins, Baltimore

    MATH  Google Scholar 

  14. Nkurunziza S (2005) Inférence statistique dans certains systèmes écologiques : système proie-prédateur. Ph.D Thesis. UQAM. Montreal

  15. Perko L (1996). Differential equations and dynamical systems, 2nd edn. Springer, New York

    MATH  Google Scholar 

  16. Royama E (1992). Analytical population dynamics. Chapman & Hall, London

    Google Scholar 

  17. Spanjaard JM and White L (1995). Adaptive period estimation of a class of periodic random processes. IEEE 5: 1792–1795

    Google Scholar 

  18. Steele JM (2001). Stochastic calculus and financial applications. Springer, New York

    MATH  Google Scholar 

  19. Volterra V (1931) Leçons sur la théorie mathématique de la lutte pour la vie. Gauthiers-Villars

  20. Whittle P (1954). Some recent contributions to the theory of stationary processes. In: Wold, H (eds) A study in the analysis of stationary time series., pp. Almqvist & Wiksell, Stockholm

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sévérien Nkurunziza.

Additional information

This research has received the financial support from Natural Sciences and Engineering Research Council of Canada and Institut des Sciences Mathématiques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nkurunziza, S. Testing interaction in some predator–prey populations. Stat Papers 50, 527–551 (2009). https://doi.org/10.1007/s00362-007-0096-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-007-0096-x

Keywords

Mathematics Subject Classification (2000)

Navigation