Skip to main content
Log in

The effect of tapering on the semiparametric estimators for nonstationary long memory processes

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper, we study, by a Monte Carlo simulation, the effect of the order p of “Zhurbenko-Kolmogorov” taper on the asymptotic properties of semiparametric estimators. We show that p  =  [d + 1/2] + 1 gives the smallest variances and mean squared errors. These properties depend also on the truncation parameter m. Moreover, we study the impact of the short-memory components on the bias and variances of these estimators. We finally carry out an empirical application by using four monthly seasonally adjusted logarithm Consumer Price Index series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abadir A, Distaso W, Giraitis L (2005) Two estimators of the long-run variance. Discussion paper series 05/09, The University of York

  • Agiakloglou C, Newbold P, Wohar M (1993) Bias in an estimator of the fractional difference parameter. J Time Series Anal 14:235–246

    Article  Google Scholar 

  • Alekseev VG (1996) Jackson and Jackson-Vallée Poussin-type kernels and their probability applications. Theory Probab Appl 41:137–143

    MATH  MathSciNet  Google Scholar 

  • Beran J (1994) Statistics For long-memory processes. Chapman & Hall, London

    MATH  Google Scholar 

  • Boutahar M, Marimoutou V, Nouira L (2007) Estimation methods of the long memory parameter: Monte Carlo analysis and application. J Appl Stat 34:261–301

    Article  MathSciNet  MATH  Google Scholar 

  • Brillinger DR (1975) Time series, data analysis and theory. Holden-Day, San Francisco

    MATH  Google Scholar 

  • Cheung YW, Lai KS (1993) A fractional cointegration analysis of purchaising power parity. J Bus Econ Stat 11:103–112

    Article  Google Scholar 

  • Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19:297–301

    Article  MATH  MathSciNet  Google Scholar 

  • Cooley JW, Lewis PAW, Welch PD (1967) Historical notes on the fast Fourier transform. IEEE Trans Audio Electroacoust 15:76–79

    Article  Google Scholar 

  • Crato N, De Lima PJF (1994) Long-range dependence in the conditional variance of stocks returns. Econ Lett 45:281–285

    Article  MATH  Google Scholar 

  • Dickey D, Fuller W (1979) Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc 74:427–431

    Article  MATH  MathSciNet  Google Scholar 

  • Geweke J, Porter-Hudak S (1983) The estimation and application of long-memory time series models. J Time Series Anal 4:221–238

    Article  MATH  MathSciNet  Google Scholar 

  • Giraitis L, Robinson PM (2003) Edgeworth expansions for semiparametric whittle estimation of long memory. Ann Statist 31:221–238

    MathSciNet  Google Scholar 

  • Granger CWJ, Joyeux R (1980) An introduction to long-memory time series models and fractional differencing. J Time Series Anal 1:1325–1375

    Article  MathSciNet  Google Scholar 

  • Hassler U, Wolters J (1995) Long memory in inflation rates: International evidence. J Bus Econ Stat 13: 37–45

    Article  Google Scholar 

  • Hauser MA (1997) Semiparametric and nonparametric testing for long memory: a Monte Carlo study. Empir Econ 22:247–271

    Article  Google Scholar 

  • Hosking JRM (1981) Fractional differencing. Biometrika 68:165–176

    Article  MATH  MathSciNet  Google Scholar 

  • Hurvich CM, Ray B (1995) Estimation of the memory parameter for nonstationary or noninvertable fractionally integrated processes. J Time Series Anal 16:17–42

    Article  MATH  MathSciNet  Google Scholar 

  • Hurvich CM, Deo RS, Brodsky J (1998) The mean squared error of Geweke and Porter-Hudak’s estimator of the memory parameter of a long-memory time series. J Time Series Anal 1:19–46

    Article  MathSciNet  Google Scholar 

  • Hurvich CM, Chen WW (2000) An efficient Taper for potentially over differenced Long-Memory Time Series. J Time Series Anal 21:155–180

    Article  MATH  MathSciNet  Google Scholar 

  • Jones RH (1971) Spectrum estimation with missing observations. Ann Inst Statist Math 23:387–398

    Article  MATH  MathSciNet  Google Scholar 

  • Kwiatkowski D, Phillips PCB, Schmidt P, Shin Y (1992) Testing the hypothesis of stationarity against the alternative of a unit root: how sure are we that economic time series have a unit root?. J Econom 54:159–178

    Article  MATH  Google Scholar 

  • Kim CS, Phillips PCB (1999) Log periodogram regression: the nonstationary case. Mimeographed, Cowles Foundation, Yale University

  • Lobato I, Robinson PM (1996) Averaged periodogram estimation of long memory. J Econom 73:303–324

    Article  MATH  MathSciNet  Google Scholar 

  • Ljung GM, Box GEP (1978) On a measure of lack of fit in time series models. Biometrika 65:553–564

    Article  MathSciNet  Google Scholar 

  • Maynard A, Phillips PCB (2001) Rethinking an old empirical puzzle: econometric evidence on the forward discount anomaly. J Appl Econom 16:671–708

    Article  Google Scholar 

  • Olhede SC, Mccoy EJ, Stephens DA (2004) Large-sample properties of the periodogram estimator of seasonally persistent processes. Biometrika 91:613–628

    Article  MATH  MathSciNet  Google Scholar 

  • Phillips PCB, Perron P (1988) Testing for a unit root in time series regression. Biometrika 75:335–346

    Article  MATH  MathSciNet  Google Scholar 

  • Phillips PCB (2005) Econometric analysis of Fisher’s equation. Am J Econ Sociol 64:125–168

    Article  Google Scholar 

  • Porter-Hudak S (1990) An application of the seasonal fractionally differenced model to the monetary aggregates. J Am Stat Assoc 85:338–344

    Article  Google Scholar 

  • Reisen VA (1994) Estimation of the fractional difference parameter in the ARIMA (p,d,q) model using the smoothed periodogram. J Time Series Anal 15:335–350

    Article  MATH  MathSciNet  Google Scholar 

  • Robinson PM (1994) Semiparametric analysis of long-memory time series. Ann Stat 22:515–539

    Article  MATH  Google Scholar 

  • Robinson PM (1995a) Log-periodogram regression of time series with long range dependence. Ann Stat 23:1048–1072

    Article  MATH  Google Scholar 

  • Robinson PM (1995b) Gaussian semiparametric estimation of long range dependence. Ann Stat 23:1630–1661

    Article  MATH  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality. Biometrika 52:591–611

    MATH  MathSciNet  Google Scholar 

  • Shimotsu K, Phillips PCB (2004) Exact local whittle estimation of fractional integration. Ann Stat 32:656–692

    Article  MATH  MathSciNet  Google Scholar 

  • Sibbertsen P (2004) Long-memory in volatilities of German stock returns. Empir Econ 29:477–488

    Article  Google Scholar 

  • Taqqu MS, Teverovsky V (1996) Semiparametric graphical estimation techniques for long memory data. Lect Notes Stat 115:420–432

    MathSciNet  Google Scholar 

  • Velasco C (1999a) Non-stationary log-periodogram regression. J Econom 91:325–371

    Article  MATH  MathSciNet  Google Scholar 

  • Velasco C (1999b) Gaussian semiparametric estimation of non-stationary time series. J Time Series Anal 20:87–127

    Article  MathSciNet  Google Scholar 

  • Zhurbenko IG (1979) On the efficiency of estimates of a spectral density. Scand J Stat 6:49–56

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leïla Nouira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nouira, L., Boutahar, M. & Marimoutou, V. The effect of tapering on the semiparametric estimators for nonstationary long memory processes. Stat Papers 50, 225–248 (2009). https://doi.org/10.1007/s00362-007-0071-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-007-0071-6

Keywords

Mathematics Subject Classification (2000)

Navigation