Skip to main content
Log in

Maximum likelihood estimators in regression models with infinite variance innovations

  • Articles
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper we consider the problem of maximum likelihood (ML) estimation in the classical AR(1) model with i.i.d. symmetric stable innovations with known characteristic exponent and unknown scale parameter. We present an approach that allows us to investigate the properties of ML estimators without making use of numerical procedures. Finally, we introduce a generalization to the multivariate case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson T. W. (1959), On asymptotic distributions of estimates of parameters of stochastic difference equations, Annals of Mathematical Statistics, 30, 676–687.

    Article  MATH  MathSciNet  Google Scholar 

  2. Billingsley P. (1968), Convergence of Probability Measures, Wiley, New York.

    MATH  Google Scholar 

  3. Chan N. H. and Tran L. T. (1989), On the first order autoregressive process with infinite variance, Econometric Theory, 5, 354–362.

    MathSciNet  Google Scholar 

  4. Davis R. (1983), Stable limits for partial sums of dependent random variables, Annals of Probability, 11, 262–269.

    Article  MATH  MathSciNet  Google Scholar 

  5. Davis R. and Resnick S. (1986), Limit theory for the sample covariance and correlation functions of moving averages, Annals of Statistics, 14, 543–558.

    Article  MathSciNet  Google Scholar 

  6. Davydov Yu., Paulauskas V., and Račkauskas A. (2000), More on P-Stable Convex Sets in Banach Spaces, J. Theoretical Probab., 13, 39–64.

    Article  MATH  Google Scholar 

  7. Feller W. (1971), An Introduction to Probability Theory and its Applications, Vol. 2, Wiley, New York, 2nd edition.

    MATH  Google Scholar 

  8. Jakubowski A. and Kobus M. (1984), α-stable limit theorems for sums of dependent random vectors, Journal of Multivariate Analysis, 29, 219–251.

    Article  MathSciNet  Google Scholar 

  9. Johansen S. (1996), Likelihood-based Inference in Cointegrated Vector Autoregressive Models, Advanced Texts in Econometric, Oxford UP, Oxford UK.

    Google Scholar 

  10. Johansen S. (1988), Statistical analysis of cointegration vectors, Journal of Economics and Dynamics and Control, 12, 231–254.

    Article  MATH  MathSciNet  Google Scholar 

  11. Jurek Z. J. and Mason J. D. (1993), Operator-Limit Distributions in Probability Theory, John Wiley & Sons, New York.

    MATH  Google Scholar 

  12. Mann H. B. and Wald A. (1943), On the statistical treatment of linear stochastic difference equations, Econometrica, 11, 173–220.

    Article  MATH  MathSciNet  Google Scholar 

  13. McCulloch J.H. (1996), Financial Applications of Stable Distributions, in Maddala G.S. and Rao C.R. (eds), Handbook of Statistics, 14, 393–425.

  14. Mijnheer J. (1997), Asymptotic inference for AR(1) processes with (nonnormal) stable errors, Journal of Mathematical Sciences, 83, 401–406.

    Article  MATH  MathSciNet  Google Scholar 

  15. Mittnik S., Paulauskas V. and Rachev S. T. (1999), Statistical Inference in Regression With Heavy-Tailed Integrated Variables, in Rachev S.T. and Mittnik S. (eds.), Stable Models in Finance, Pergamon Press, to appear.

  16. Mittnik S., Rachev S. T. and Paolella M. (1998), Stable Paretian modeling in finance: some empirical and theoretical aspects, in R. Adler, R. E. Feldman and M. S. Taqqu (eds.), A Practical Guide to Heavy Tails, pp. 79–110, Birkhäuser, Boston.

    Google Scholar 

  17. Nolan J. P. (1997), Maximum likelihood estimation and diagnostics for stable distributions, Preprint.

  18. Paulauskas V. and Rachev S. T. (1998), Cointegrated processes with infinite variance innovations, Annals of Applied Probability, 8, 775–792.

    Article  MATH  MathSciNet  Google Scholar 

  19. Park J. Y. and Phillips P. C. B. (1988), Statistical inference in regressions with integrated processes: part I, Econometric Theory, 4, 468–497.

    MathSciNet  Google Scholar 

  20. Phillips P. C. B. (1987), Towards a unified asymptotic theory for autoregression, Biometrika, 74, 535–547.

    Article  MATH  MathSciNet  Google Scholar 

  21. Rachev S. T., Kim J-R. and Mittnik S. (1997), Econometric modeling in the presence of heavy-tailed innovations: a survey of some recent advances, Stochastic Models, 13, 841–866.

    Article  MATH  MathSciNet  Google Scholar 

  22. Samorodnitsky G. and Taqqu M. S. (1994), Stable non-Gaussian Random Processes: Models with Infinite Variance, Chapman and Hall, New York.

    MATH  Google Scholar 

  23. Sharpe M. (1969), Operator-stable probability distributions on vector groups, Transactions of the American Mathematical Society, 136, 51–65.

    Article  MATH  MathSciNet  Google Scholar 

  24. Zolotarev V. M. (1986), One-dimensional Stable Distributions, American Mathematical Society, Providence, RI.

    MATH  Google Scholar 

  25. White J. S. (1958), The limiting distribution of the serial correlation coefficient in the explosive case, Annals of Mathematical Statistics, 29, 1188–1197.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vygantas Paulaauskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulaauskas, V., Rachev, S.T. Maximum likelihood estimators in regression models with infinite variance innovations. Statistical Papers 44, 47–65 (2003). https://doi.org/10.1007/s00362-002-0133-8

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-002-0133-8

AMS 1980 classifications

Key words and phrases

Navigation