Skip to main content
Log in

Hibernation-based blood loss therapy increases survivability of lethal hemorrhagic shock in rats

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

A small-volume (1 ml/kg) resuscitation fluid based on metabolic adaptations in hibernating mammals was optimized using a rat model of hemorrhagic shock. A previous study of this therapy tested only one concentration of three specific components: 4 M D-stereoisomer of beta-hydroxybutyrate (BHB), 43 mM melatonin, and 20% DMSO. In this study, we considered the range of concentrations of BHB and melatonin seen during the physiological extremes of rapid arousal from hypothermic torpor in natural hibernators and applied these to the non-hibernating Sprague–Dawley rat model. These extremes normally result in ischemia and reperfusion injury in non-hibernating mammals. Dose-ranging studies were conducted for BHB and melatonin in rats with 60% blood loss. BHB was administered at either 4, 2, or 0.4 M concentration in conjunction with 4.3 mM melatonin and 10% DMSO. Subsequently, melatonin was administered at either 4.3, 0.43, 0.0043, 0.000043, or 0 mM in conjunction with 4 M BHB and 2% DMSO. 10-day mean survival showed a dose-dependent trend: rats survived longer with higher concentration of infused BHB (4 M BHB, 7.38 ± 1.75 days; 2 M BHB, 5.25 ± 2.22 days; 0.4 M BHB, 2.07 ± 2.05 days). Administering 4 M BHB without melatonin resulted in low mean survival times (4.38 ± 1.42 days). All treatments containing both 4 M BHB and melatonin, regardless of melatonin concentration, resulted in mean survival times of ~7.5 days. We conclude there is a dose-dependent trend in which higher BHB concentration resulted in improved survival over 10 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alam HB, Koustova E, Rhee P (2005) Combat casualty care research: from bench to the battlefield. World J Surg 29(0):S7–S11. doi:10.1007/s00268-004-2052-4

    Article  PubMed  Google Scholar 

  • Andrews MT (2007) Advances in molecular biology of hibernation in mammals. Bioessays 29(5):431–440

    Article  CAS  PubMed  Google Scholar 

  • Andrews MT, Russeth KP, Drewes LR, Henry P-G (2009) Adaptive mechanisms regulate preferred utilization of ketones in the heart and brain of a hibernating mammal during arousal from torpor. Am J Physiol Regul Integr Comp Physiol 296(2):R383–R393

    Article  CAS  PubMed  Google Scholar 

  • Angele MK, Schneider CP, Chaudry IH (2008) Bench-to-bedside review: latest results in hemorrhagic shock. Crit Care 12(4):218

    Article  PubMed  PubMed Central  Google Scholar 

  • Baue AE, Faist E, Fry DE (2000) Multiple organ failure: pathophysiology, prevention, and therapy. Springer, New York

    Book  Google Scholar 

  • Benot S, Molinero P, Soutto M, Goberna R, Guerrero JM (1998) Circadian variations in the rat serum total antioxidant status: Correlation with melatonin levels. J Pineal Res 25(1):1–4. doi:10.1111/j.1600-079X.1998.tb00378.x

    Article  CAS  PubMed  Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10):1195–1214

    Article  CAS  PubMed  Google Scholar 

  • Cuzzocrea S, Reiter RJ (2001) Pharmacological action of melatonin in shock, inflammation and ischemia/reperfusion injury. Eur J Pharmacol 426(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • D’Alecy L (1990) Beta-hydroxybutyrate and response to hypoxia in the ground squirrel, Spermophilus tridecemlineatus. Comp Biochem Physiol B 96(1):189–193

    Article  PubMed  Google Scholar 

  • Florant GL, Rivera M, Lawrence AK, Tamarkin L (1984) Plasma melatonin concentrations in hibernating marmots: absence of a plasma melatonin rhythm. Am J Physiol-Reg I 247(6):R1062–R1066

    CAS  Google Scholar 

  • Geiser F, Mzilikazi N (2011) Does torpor of elephant shrews differ from that of other heterothermic mammals? J Mammal 92(2):452–459

    Article  Google Scholar 

  • Graf R, Schaller B (2004) “Natural” tolerance in hibernators: can we learn from physiological preconditioning against ischemic or hypoxic brain injury? In: Schaller B (ed) Cerebral ischemic tolerance: from animal models to clinical relevance. Nova Science Publishers Inc., Hauppauge

    Google Scholar 

  • Guyton A, Hall J (1996) Textbook of medical physiology. 9th edn. W.B. Suanders Company, Philadelphia

    Google Scholar 

  • Holcroft JW, Vassar MJ, Turner JE, Derlet RW, Kramer GC (1987) 3% NaCl and 7.5% NaCl/dextran 70 in the resuscitation of severely injured patients. Ann Surg 206(3):279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauvar DS, Wade CE (2005) The epidemiology and modern management of traumatic hemorrhage: US and international perspectives. Crit Care 9(Suppl 5):S1–S9

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein AH, Wendroth SM, Drewes LR, Andrews MT (2010) Small-Volume d-[beta]-hydroxybutyrate solution infusion increases survivability of lethal hemorrhagic shock in rats. Shock 34(6):565–572

    Article  CAS  PubMed  Google Scholar 

  • Kreimeier U, Messmer K (2002) Small-volume resuscitation: from experimental evidence to clinical routine. Advantages and disadvantages of hypertonic solutions. Acta Anaesthesiol Scand 46(6):625–638

    Article  CAS  PubMed  Google Scholar 

  • Larkin JE, Yellon SM, Zucker I (2003) Melatonin production accompanies arousal from daily torpor in Siberian hamsters. Physiol Biochem Zool 76:577–585

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Blaufox M (1985) Blood volume in the rat. J Nucl Med 26(1):72–76

    CAS  PubMed  Google Scholar 

  • Luo M-y, Yang B-l, Ye F, Wu X, Peng S, Yi B, Wang W, Zhu W, Luo H, Wen J-G (2011) Collateral vessel growth induced by femoral artery ligature is impaired by denervation. Mol Cell Biochem 354(1–2):219–229

    Article  CAS  PubMed  Google Scholar 

  • Mayo JC, Sainz RM, Tan D-X, Hardeland R, Leon J, Rodriguez C, Reiter RJ (2005) Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J Neuroimmunol 165(1):139–149

    Article  CAS  PubMed  Google Scholar 

  • Mulier KE, Lexcen DR, Luzcek E, Greenberg JJ, Beilman GJ (2012) Treatment with beta-hydroxybutyrate and melatonin is associated with improved survival in a porcine model of hemorrhagic shock. Resuscitation 83(2):253–258

    Article  CAS  PubMed  Google Scholar 

  • Nakayama S-i, Sibley L, Gunther R, Holcroft J, Kramer G (1984) Small-volume resuscitation with hypertonic saline (2400 mOsm/liter) during hemorrhagic shock. Circulatory shock 13(2):149

    CAS  PubMed  Google Scholar 

  • Rhee P, Alam H, Ling G (2003) Hemorrhagic shock and resuscitation: trauma research at the trauma research and readiness institute for sugery. In: Tsokos G, Atkins J (eds) Combat medicine: basic and clinical research in military, trauma, and emergency medicine. Humana Press Inc., Totowa New Hersey

    Google Scholar 

  • Russeth KP, Higgins L, Andrews MT (2006) Identification of proteins from non-model organisms using mass spectrometry: application to a hibernating mammal. J Proteome Res 5:829–839

    Article  CAS  PubMed  Google Scholar 

  • Sanada S, Komuro I, Kitakaze M (2011) Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol 301(5):H1723–H1741

    Article  CAS  PubMed  Google Scholar 

  • Schwartz C, Ballinger MA, Andrews MT (2015) Melatonin receptor signaling contributes to neuroprotection upon arousal from torpor in thirteen-lined ground squirrels. Am J Physiol Regul Integr Comp Physiol 309(10):R1292–R1300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stanton TL, Craft CM, Reiter RJ (1986) Pineal melatonin: circadian rhythm and variations during the hibernation cycle in the ground squirrel Spermophilus lateralis. J Exp Zool 239:247–254

    Article  CAS  PubMed  Google Scholar 

  • Support ACoSCoTSoATL (1989) Advanced trauma life support course for physicians. The Committee

  • Tan D, Manchester LC, Sainz RM, Mayo JC, Leon J, Reiter RJ (2005) Physiological ischemia/reperfusion phenomena and their relation to endogenous melatonin production. Endocr 27:149–157

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the U.S. Army Medical Research and Materiel Command (Grant W81XWH-11-1-0409) for financial support. Very special recognition goes to Dr. Ronald Regal of Mathematics and Statistics Department at the University of Minnesota Duluth, for all of his guidance with statistical analyses. We also thank Alison Kingsbury, Krysta Nelson, and Matt Donohue of the Andrews laboratory as well as Ms. Kristine Mulier and Dr. Gregory Beilman of the Department of Surgery at the University of Minnesota.

Funding

Funded by U.S. Army Medical Research and Materiel Command contract W81XWH-11-1-0409.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew T. Andrews.

Additional information

Communicated by F. Breukelen.

This manuscript is part of the special issue Hibernation—Guest Editors: Frank van Breukelen and Jenifer C. Utz.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez de Lara Rodriguez, C., Drewes, L.R. & Andrews, M.T. Hibernation-based blood loss therapy increases survivability of lethal hemorrhagic shock in rats. J Comp Physiol B 187, 769–778 (2017). https://doi.org/10.1007/s00360-017-1076-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-017-1076-7

Keywords

Navigation