Skip to main content
Log in

Sex differences in oxidative stress resistance in relation to longevity in Drosophila melanogaster

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Gender differences in lifespan and aging are known across species. Sex differences in longevity within a species can be useful to understand sex-specific aging. Drosophila melanogaster is a good model to study the problem of sex differences in longevity since females are longer lived than males. There is evidence that stress resistance influences longevity. The objective of this study was to investigate if there is a relationship between sex differences in longevity and oxidative stress resistance in D. melanogaster. We observed a progressive age-dependent decrease in the activity of SOD and catalase, major antioxidant enzymes involved in defense mechanisms against oxidative stress in parallel to the increased ROS levels over time. Longer-lived females showed lower ROS levels and higher antioxidant enzymes than males as a function of age. Using ethanol as a stressor, we have shown differential susceptibility of the sexes to ethanol wherein females exhibited higher resistance to ethanol-induced mortality and locomotor behavior compared to males. Our results show strong correlation between sex differences in oxidative stress resistance, antioxidant defenses and longevity. The study suggests that higher antioxidant defenses in females may confer resistance to oxidative stress, which could be a factor that influences sex-specific aging in D. melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1983) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 3rd edn. Verlag, Chemie, Weinheim, pp. 273–286

    Google Scholar 

  • Andziak B, O’Connor TP, Qi W et al (2006) High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell 5:463–471

    Article  CAS  PubMed  Google Scholar 

  • Archer CR, Sakaluk SK, Selman C et al (2013) Oxidative stress and the evolution of sex differences in life span and ageing in the decorated cricket, Gryllodes sigillatus. Evol Int J org Evol 67:620–634

    Article  CAS  Google Scholar 

  • Austad SN, Fischer KE (2016) Sex differences in lifespan. Cell Metab 23:1022–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bainton RJ, Tsai LT, Singh CM et al (2000) Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila. Curr Biol 10:187–194

    Article  CAS  PubMed  Google Scholar 

  • Ballard JWO, Melvin RG, Miller JT, Katewa SD (2007) Sex differences in survival and mitochondrial bioenergetics during aging in Drosophila. Aging Cell 6:699–708

    Article  CAS  PubMed  Google Scholar 

  • Barbancho M, Sánchez-Cañete FJ, Dorado G, Pineda M (1987) Relation between tolerance to ethanol and alcohol dehydrogenase (ADH) activity in Drosophila melanogaster: selection, genotype and sex effects. Heredity (Edinb) 58(Pt 3):443–450

    Article  CAS  Google Scholar 

  • Barja G (2013) Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal 19:1420–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barja G, Herrero A (2000) Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 14:312–318

    CAS  PubMed  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    CAS  PubMed  Google Scholar 

  • Borrás C, Sastre J, García-Sala D et al (2003) Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free Radic Biol Med 34:546–552

    Article  PubMed  Google Scholar 

  • Charlesworth B (1994) Evolution in age-structured populations, 2nd edn. Cambridge University Press, UK

    Book  Google Scholar 

  • Chaudhuri A, Bowling K, Funderburk C et al (2007) Interaction of genetic and environmental factors in a Drosophila parkinsonism model. J Neurosci 27:2457–2467

    Article  CAS  PubMed  Google Scholar 

  • Chauhan V, Chauhan A (2016) Effects of methylmercury and alcohol exposure in Drosophila melanogaster: Potential risks in neurodevelopmental disorders. Int J Dev Neurosci 51:36–41

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Vasudevan DM (2007) Alcohol-induced oxidative stress. Life Sci 81:177–187

    Article  CAS  PubMed  Google Scholar 

  • Devineni AV, Heberlein U (2012) Acute ethanol responses in Drosophila are sexually dimorphic. Proc Natl Acad Sci USA 109:21087–21092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson K, Pikkarainen PH (1968) Differences between the sexes in voluntary alcohol consumption and liver ADH-activity in inbred strains of mice. Metabolism 17:1037–1042

    Article  CAS  PubMed  Google Scholar 

  • Ernsting G, Isaaks JA (1991) Accelerated ageing: a cost of reproduction in the carabid beetle Notiophilus biguttatus F. Funct Ecol 5:299

    Article  Google Scholar 

  • Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398

    Article  CAS  PubMed  Google Scholar 

  • Finch CE (1990) Longevity, senescence and the genome. University of Chicago Press, Chicago

    Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  • Gargano JW, Martin I, Bhandari P, Grotewiel MS (2005) Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Exp Gerontol 40:386–395

    Article  PubMed  Google Scholar 

  • Gibson JB, Lewis N, Adena MA, Wilson SR (1979) Selection for ethanol tolerance in two populations of Drosophila melanogaster segregating alcohol dehydrogenase allozymes. Aust J Biol Sci 32:387–398

    Article  CAS  PubMed  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  CAS  PubMed  Google Scholar 

  • Hughes KA, Reynolds RM (2005) Evolutionary and mechanistic theories of aging. Annu Rev Entomol 50:421–445

    Article  CAS  PubMed  Google Scholar 

  • Ide T, Tsutsui H, Ohashi N et al (2002) Greater oxidative stress in healthy young men compared with premenopausal women. Arterioscler Thromb Vasc Biol 22:438–442

    Article  CAS  PubMed  Google Scholar 

  • Isaksson C, Sheldon BC, Uller T (2011) The challenges of integrating oxidative stress into life-history biology. Bioscience 61:194–202

    Article  Google Scholar 

  • Jahromi SR, Haddadi M, Shivanandappa T, Ramesh SR (2015) Modulatory effect of Decalepis hamiltonii on ethanol-induced toxicity in transgenic Drosophila model of Parkinson’s disease. Neurochem Int 80:1–6

    Article  CAS  PubMed  Google Scholar 

  • Janzen FJ (1995) Experimental evidence for the evolutionary significance of temperature dependent sex determination. Evolution (N Y) 49:864

    Google Scholar 

  • Johnson TE, de Castro E, Hegi de Castro S et al (2001) Relationship between increased longevity and stress resistance as assessed through gerontogene mutations in Caenorhabditis elegans. Exp Gerontol 36:1609–1617

    Article  CAS  PubMed  Google Scholar 

  • Jones MA, Grotewiel M (2011) Drosophila as a model for age-related impairment in locomotor and other behaviors. Exp Gerontol 46:320–325

    Article  PubMed  Google Scholar 

  • Kasdallah-Grissa A, Mornagui B, Aouani E et al (2007) Resveratrol, a red wine polyphenol, attenuates ethanol-induced oxidative stress in rat liver. Life Sci 80:1033–1039

    Article  CAS  PubMed  Google Scholar 

  • Kavanagh MW (1987) The efficiency of sound production in two cricket species, Gryllotalpa australis and Teleogryllus commodus (Orthoptera: Grylloidea). J Exp Biol 130:107–119

    Google Scholar 

  • Kirkwood TBL, Kowald A (2012) The free-radical theory of ageing–older, wiser and still alive: modelling positional effects of the primary targets of ROS reveals new support. Bioessays 34:692–700

    Article  CAS  PubMed  Google Scholar 

  • Ku H-H, Brunk UT, Sohal RS (1993) Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic Biol Med 15:621–627

    Article  CAS  PubMed  Google Scholar 

  • Kurepa J, Smalle J, Van Montagu M, Inzé D (1998) Oxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat. Plant J 14:759–764

    Article  CAS  PubMed  Google Scholar 

  • Le Bourg E (2001) Oxidative stress, aging and longevity in Drosophila melanogaster. FEBS Lett 498:183–186

    Article  CAS  PubMed  Google Scholar 

  • LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  CAS  PubMed  Google Scholar 

  • Lewis KN, Andziak B, Yang T, Buffenstein R (2013) The naked mole-rat response to oxidative stress: just deal with it. Antioxid Redox Signal 19:1388–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lints FA, Bourgois M, Delalieux A et al (1983) Does the female life span exceed that of the male? A study in Drosophila melanogaster. Gerontology 29:336–352

    Article  CAS  PubMed  Google Scholar 

  • Liochev SI (2015) Reflections on the theories of aging, of oxidative stress, and of science in general. Is it time to abandon the free radical (oxidative stress) theory of aging? Antioxid Redox Signal 23:187–207

    Article  CAS  PubMed  Google Scholar 

  • Logan-Garbisch T, Bortolazzo A, Luu P et al (2014) Developmental ethanol exposure leads to dysregulation of lipid metabolism and oxidative stress in Drosophila. G3 (Bethesda) 5:49–59. doi:10.1534/g3.114.015040

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Malherbe Y, Kamping A, van Delden W, van de Zande L (2005) ADH enzyme activity and Adh gene expression in Drosophila melanogaster lines differentially selected for increased alcohol tolerance. J Evol Biol 18:811–819

    Article  CAS  PubMed  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  • McDonald JF, Chambers GK, David J, Ayala FJ (1977) Adaptive response due to changes in gene regulation: a study with Drosophila. Proc Natl Acad Sci USA 74:4562–4566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migliaccio E, Giorgio M, Mele S et al (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313

    Article  CAS  PubMed  Google Scholar 

  • Miles DB (2004) The race goes to the swift: fitness consequences of variation in sprint performance in juvenile lizards. Evol Ecol Res 6:63–75

    Google Scholar 

  • Monaghan P, Metcalfe NB, Torres R (2009) Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol Lett 12:75–92

    Article  PubMed  Google Scholar 

  • Montooth KL, Siebenthall KT, Clark AG (2006) Membrane lipid physiology and toxin catabolism underlie ethanol and acetic acid tolerance in Drosophila melanogaster. J Exp Biol 209:3837–3850

    Article  CAS  PubMed  Google Scholar 

  • Moore MS, DeZazzo J, Luk AY et al (1998) Ethanol intoxication in Drosophila: Genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell 93:997–1007

    Article  CAS  PubMed  Google Scholar 

  • Murakami S, Salmon A, Miller RA (2003) Multiplex stress resistance in cells from long-lived dwarf mice. FASEB J 17:1565–1566

    CAS  PubMed  Google Scholar 

  • Oka S, Hirai J, Yasukawa T et al (2015) A correlation of reactive oxygen species accumulation by depletion of superoxide dismutases with age-dependent impairment in the nervous system and muscles of Drosophila adults. Biogerontology 16:485–501

    Article  CAS  PubMed  Google Scholar 

  • Okada K, Pitchers WR, Sharma MD et al (2011) Longevity, calling effort, and metabolic rate in two populations of cricket. Behav Ecol Sociobiol 65:1773–1778

    Article  Google Scholar 

  • Orr WC, Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130

    Article  CAS  PubMed  Google Scholar 

  • Pérez VI, Bokov A, Van Remmen H et al (2009) Is the oxidative stress theory of aging dead? Biochim Biophys Acta Gen Subj 1790:1005–1014

    Article  Google Scholar 

  • Robert KA, Brunet-Rossinni A, Bronikowski AM (2007) Testing the “free radical theory of aging” hypothesis: physiological differences in long-lived and short-lived colubrid snakes. Aging Cell 6:395–404

    Article  CAS  PubMed  Google Scholar 

  • Rose MR, Vu LN, Park SU, Graves JL (1992) Selection on stress resistance increases longevity in Drosophila melanogaster. Exp Gerontol 27:241–250

    Article  CAS  PubMed  Google Scholar 

  • Sanz A, Fernández-Ayala DJM, Stefanatos RK, Jacobs HT (2010) Mitochondrial ROS production correlates with, but does not directly regulate lifespan in Drosophila. Aging 2:200–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Service PM, Hutchinson EW, Mackinley MD, Rose MR (1985) Resistance to environmental stress in Drosophila melanogaster selected for postponed senescence. Physiol Zool 58:380–389

    Article  Google Scholar 

  • Sohal RS (2002) Role of oxidative stress and protein oxidation in the aging process. Free Radic Biol Med 33:37–44

    Article  CAS  PubMed  Google Scholar 

  • Sohal RS, Sohal BH, Orr WC (1995) Mitochondrial superoxide and hydrogen peroxide generation, protein oxidative damage, and longevity in different species of flies. Free Radic Biol Med 19:499–504

    Article  CAS  PubMed  Google Scholar 

  • Speakman JR, Selman C (2011) The free-radical damage theory: accumulating evidence against a simple link of oxidative stress to ageing and lifespan. Bioessays 33:255–259

    Article  PubMed  Google Scholar 

  • Tomás-Zapico C, Alvarez-García O, Sierra V et al (2006) Oxidative damage in the livers of senescence-accelerated mice: a gender-related response. Can J Physiol Pharmacol 84:213–220

    Article  PubMed  Google Scholar 

  • Tower J, Arbeitman M (2009) The genetics of gender and life span. J Biol 8:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Trivers R (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man 1871–1971. Aldine, Chicago, pp 136–179

    Google Scholar 

  • Vermeulen CJ, Van De Zande L, Bijlsma R (2005) Resistance to oxidative stress induced by paraquat correlates well with both decreased and increased lifespan in Drosophila melanogaster. Biogerontology 6:387–395

    Article  CAS  PubMed  Google Scholar 

  • Viña J, Borrás C, Gambini J et al (2005) Why females live longer than males? Importance of the upregulation of longevity-associated genes by oestrogenic compounds. FEBS Lett 579:2541–2545

    Article  PubMed  Google Scholar 

  • Warner DA, Andrews RM (2002) Laboratory and field experiments identify sources of variation in phenotypes and survival of hatchling lizards. Biol J Linn Soc 76:105–124

    Article  Google Scholar 

  • Wolf FW, Rodan AR, Tsai LT-Y, Heberlein U (2002) High-resolution analysis of ethanol-induced locomotor stimulation in Drosophila. J Neurosci 22:11035–11044

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The first and second authors thank Department of Science and Technology, Government of India, for the financial support under INSPIRE fellowship program. Thanks are also due to The Chairperson, Department of Zoology, University of Mysore, Mysuru, for the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Shivanandappa.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by H. V. Carey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niveditha, S., Deepashree, S., Ramesh, S.R. et al. Sex differences in oxidative stress resistance in relation to longevity in Drosophila melanogaster . J Comp Physiol B 187, 899–909 (2017). https://doi.org/10.1007/s00360-017-1061-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-017-1061-1

Keywords

Navigation