Skip to main content
Log in

Fatty acid mobilization and comparison to milk fatty acid content in northern elephant seals

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

A fundamental feature of the life history of true seals, bears and baleen whales is lactation while fasting. This study examined the mobilization of fatty acids from blubber and their subsequent partitioning into maternal metabolism and milk production in northern elephant seals (Mirounga angustirostris). The fatty acid composition of blubber and milk was measured in both early and late lactation. Proportions of fatty acids in milk and blubber were found to display a high degree of similarity both early and late in lactation. Seals mobilized an enormous amount of lipid (~66 kg in 17 days), but thermoregulatory fatty acids, those that remain fluid at low temperatures, were relatively conserved in the outer blubber layer. Despite the stratification, the pattern of mobilization of specific fatty acids conforms to biochemical predictions. Long chain (>20C) monounsaturated fatty acids (MUFAs) were the least mobilized from blubber and the only class of fatty acids that showed a proportional increase in milk in late lactation. Polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) were more mobilized from the blubber, but neither proportion increased in milk at late lactation. These data suggest that of the long chain MUFA mobilized, the majority is directed to milk synthesis. The mother may preferentially use PUFA and SFA for her own metabolism, decreasing the availability for deposition into milk. The potential impacts of milk fatty acid delivery on pup diving development and thermoregulation are exciting avenues for exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arriola-Ortiz A (2010) On the dynamics and selective transport of fatty acids and organochlorines in lactating grey seals (Halichoerus grypus). University of St. Andrews, St. Andrews

    Google Scholar 

  • Astrup AV, Brazinet R, Brenna JT, Calder PC, Crawford MA, Dangour A, Donahoo WT, Elmadfa I, Galli C, Gerber M, Henry CJ, Kornsteiner-Krenn M, Lapillonne A, Melanson EL, Miller J, Mozaffarian D, Ratnayake MN, Sanders TAB, Sinclair AJ, Skeaff CM, Smit LA, Uauy R, Wolmarans P, Williett W (2010) Fats and fatty acids in humans: report of an expert consultation. Food and Agriculture Organization of the United Nations, Rome

  • Best NJ, Bradshaw CJA, Hindell MA, Nichols PD (2003) Vertical stratification of fatty acids in the blubber of southern elephant seals (Mirounga leonina): implications for diet analysis. Comp Biochem Physiol B: Biochem Mol Biol 134(2):253–263. doi:10.1016/s1096-4959(02)00252-x

    Article  Google Scholar 

  • Castellini MA, Rea LD (1992) The biochemistry of natural fasting at its limits. Experientia 48:575–582

    Article  CAS  PubMed  Google Scholar 

  • Christie WW (1982) Lipid analysis, 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  • Conner WE, Lin DS, Colvis C (1996) Differential mobilization of fatty acids from adipose tissue. J Lipid Res 37(2):290–298

    CAS  PubMed  Google Scholar 

  • Costa DP (1991) Reproductive and foraging energetics of pinnipeds: implications for life history patterns. In: Renouf D (ed) The behavior of pinnipeds. Chapman and Hall, London

    Google Scholar 

  • Costa DP, Le Boeuf BJ, Huntley AC, Ortiz CL (1986) The energetics of lactation in the northern elephant seal, Mirounga angustirostris. J Zool Lond 209:21–33

    Article  Google Scholar 

  • Crocker DE, Williams JD, Costa DP, Le Boeuf BJ (2001) Maternal traits and reproductive effort in northern elephant seals. Ecology 82(12):3541–3555

    Article  Google Scholar 

  • Debier C, Kovacs KM, Lydersen C, Mignolet E, Larondelle Y (1999) Vitamin E and vitamin A contents, fatty acid profiles, and gross composition of harp and hooded seal milk through lactation. Can J Zool 77:952–958

    Article  CAS  Google Scholar 

  • DeLany JP, Windhauser MM, Champagne CM, Bray GA (2000) Differential oxidation of individual dietary fatty acids in humans. Am J Clin Nutr 72(4):905–911

    CAS  PubMed  Google Scholar 

  • Dils RR (1983) Milk fat synthesis. In: Mepham TB (ed) Biochemistry of lactation. Elsevier Science Publishers, Amsterdam, pp 141–158

    Google Scholar 

  • Fleith M, Clandinin MT (2005) Dietary PUFA for preterm and term infants: review of clinical studies. Crit Rev Food Sci Nutr 45(3):205–229. doi:10.1080/10408690590956378

    Article  CAS  PubMed  Google Scholar 

  • Frayn KN (2010) Metabolic regulation: a human perspective. Wiley-Blackwell, West Sussex

  • Gales NJ, Burton HR (1987) Ultrasonic measurement of blubber thickness of the southern elephant seal, Mirounga leonina (Linn.). Aust J Zool 35:207–217

    Google Scholar 

  • Gittleman JL, Thompson SD (1988) Energy allocation in mammalian reproduction. Am Zool 28:863–875

    Google Scholar 

  • Grahl-Nielsen O, Hammill MO, Lydersen C, Wahlstrem S (2000) Transfer of fatty acids from female seal blubber via milk to pup blubber. J Comp Physiol B 170:277–283

    Article  CAS  PubMed  Google Scholar 

  • Grahl-Nielsen O, Haug T, Lindstrom U, Nilssen K (2011) Fatty acids in harp seal blubber do not necessarily reflect their diet. Mar Ecol Prog Ser 426:263–276. doi:10.3354/meps09011

    Article  CAS  Google Scholar 

  • Grummer RR (1991) Effect of feed on the composition of milk fat. J Dairy Sci 74(9):3244–3257

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Xie W, Lei T, Hamilton J (2005) Eicosapentaenoic acid, but not oleic acid, stimulates β-oxidation in adipocytes. Lipids 40(8):815–821. doi:10.1007/s11745-005-1443-8

    Article  CAS  PubMed  Google Scholar 

  • Harris W (1997) n-3 fatty acids and serum lipoproteins: animal studies. Am J Clin Nutr 65(5):1611S–1616S

    CAS  PubMed  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biomed J 50(3):346–363

    Google Scholar 

  • Iverson SJ (1993) Milk secretion in marine mammals in relation to foraging: can milk fatty acids predict diet? Symp Zool Soc Lond 66:263–291

    Google Scholar 

  • Iverson SJ, Sampugna J, Oftedal OT (1992) Positional specificity of gastric hydrolysis of long-chain n-3 polyunsaturated fatty acids of seal milk triglycerides. Lipids 27(11):870–878

    Article  CAS  PubMed  Google Scholar 

  • Iverson SJ, Oftedal OT, Bowen WD, Boness DJ, Sampugna J (1995) Prenatal and postnatal transfer of fatty acids from mother to pup in the hooded seal. J Comp Physiol B 165:1–12

    Article  CAS  PubMed  Google Scholar 

  • Iverson SJ, Field C, Bowen WD, Blanchard W (2004) Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol Monogr 74(2):211–235

    Article  Google Scholar 

  • Jump DB (2002) The biochemistry of n-3 polyunsaturated fatty acids. J Biol Chem 277(11):8755–8758. doi:10.1074/jbc.R100062200

    Article  CAS  PubMed  Google Scholar 

  • Kanatous SB, Hawke TJ, Trumble SJ, Pearson LE, Watson RR, Garry DJ, Williams TM, Davis RW (2008) The ontogeny of aerobic and diving capacity in the skeletal muscles of Weddell seals. J Exp Biol 211(16):2559–2565. doi:10.1242/jeb.018119

    Article  CAS  PubMed  Google Scholar 

  • Koopman HN, Iverson SJ, Gaskin DE (1996) Stratification and age-related differences in blubber fatty acids of the male harbour porpoise (Phocoena phocoena). J Comp Physiol (B) 165(8):628–639. doi:10.1007/bf00301131

    Article  CAS  Google Scholar 

  • Koopman HN, Pabst DA, McLellan WA, Dillaman RM, Read AJ (2002) Changes in blubber distribution and morphology associated with starvation in the harbor porpoise (Phocoena phocoena): evidence for regional differences in blubber structure and function. Physiol Biochem Zool 75(5):498–512

    Article  CAS  PubMed  Google Scholar 

  • Krebs CJ (1999) Ecological methodology, 2nd edn. Benjamin Cummings, Menlo Park

    Google Scholar 

  • Kris-Etherton P, Yu S (1997) Individual fatty acid effects on plasma lipids and lipoproteins: human studies. Am J Clin Nutr 65(5):1628S–1644S

    CAS  PubMed  Google Scholar 

  • Larque E, Demmelmair H, Koletzko B (2002) Perinatal supply and metabolism of long-chain polyunsaturated fatty acids. Ann N Y Acad Sci 967:299–310

    Article  CAS  PubMed  Google Scholar 

  • Makrides M, Neumann M, Simmer K, Gibson R, Pater J (1995) Are long-chain polyunsaturated fatty acids essential nutrients in infancy? Lancet 345(8963):1463–1468. doi:10.1016/s0140-6736(95)91035-2

    Article  CAS  PubMed  Google Scholar 

  • Nieminen P, Käkelä R, Pyykönen T, Mustonen A-M (2006) Selective fatty acid mobilization in the American mink (Mustela vison) during food deprivation. Comp Biochem Physiol B: Biochem Mol Biol 145(1):81–93

    Article  Google Scholar 

  • Noren SR, Pearson LE, Davis J, Trumble SJ, Kanatous SB (2008) Different thermoregulatory strategies in nearly weaned pup, yearling, and adult weddell seals (Leptonychotes weddelli). Physiol Biochem Zool 81(6):868–879

    Google Scholar 

  • Noren DP, Crocker DE, Williams TM, Costa DP (2003) Energy reserve utilization in northern elephant seal (Mirounga angustirostris) pups during the postweaning fast: size does matter. J Comp Physiol (B) 173(5):443–454. doi:10.1007/s00360-003-0353-9

    Article  CAS  Google Scholar 

  • Noren DP, Budge SM, Iverson SJ, Goebel M, Costa DP, Williams TM (2013) Characterization of blubber FA signatures in northern elephant seals (Mirounga angustirostrus) over the postweaning fast. J Comp Physiol B: Biochem Syst Environ Physiol (in press)

  • Oftedal OT (1993) The adaptation of milk secretion to the constraints of fasting in bears, seals, and baleen whales. J Dairy Sci 76(10):3234–3246

    Article  CAS  PubMed  Google Scholar 

  • Petraitis PS (1981) Algebraic and graphical relationships among niche breadth measures. Ecology 62(3):545–548

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D (2009) nlme: linear and nonlinear mixed effects models

  • Price ER, Krokfors A, Guglielmo CG (2008) Selective mobilization of fatty acids from adipose tissue in migratory birds. J Exp Biol 211(1):29–34. doi:10.1242/jeb.009340

    Article  CAS  PubMed  Google Scholar 

  • Price E, Staples J, Milligan C, Guglielmo C (2011) Carnitine palmitoyl transferase activity and whole muscle oxidation rates vary with fatty acid substrate in avian flight muscles. J Comp Physiol (B) 181(4):565–573. doi:10.1007/s00360-010-0542-2

    CAS  Google Scholar 

  • Raclot T (2003) Selective mobilization of fatty acids from adipose tissue triacylglycerols. Prog Lipid Res 42(4):257–288. doi:10.1016/s0163-7827(02)00066-8

    Article  CAS  PubMed  Google Scholar 

  • Raclot T, Groscolas R (1993) Differential mobilization of white adipose tissue fatty acids according to chain length, unsaturation, and positional isomerism. J Lipid Res 34:1515–1526

    CAS  PubMed  Google Scholar 

  • Raclot T, Groscolas R (1995) Selective mobilization of adipose tissue fatty acids during energy depletion in the rat. J Lipid Res 36(10):2164–2173

    CAS  PubMed  Google Scholar 

  • Raclot T, Leray C, Bach A, Groscolas R (1995a) The selective mobilization of fatty acids is not based on their positional distribution in white-fat-cell triacylglycerols. Biochem J 311:911–916

    CAS  PubMed  Google Scholar 

  • Raclot T, Mioskowski E, Bach AC, Groscolas R (1995b) Selectivity of fatty acid mobilization: a general metabolic feature of adipose tissue. Am J Physiol Regul Integr Comp Physiol 269(5):R1060–R1067

    CAS  Google Scholar 

  • Radin NS (1981) Extraction of tissue lipids with a solvent of low toxicity. Methods Enzymol 72:5–7

    CAS  PubMed  Google Scholar 

  • Riedman M, Ortiz CL (1979) Changes in milk composition during lactation in the Northern elephant seal. Physiol Zool 52:240–249

    CAS  Google Scholar 

  • Robinson PW, Costa DP, Crocker DE, Gallo-Reynoso JP, Champagne CD, Fowler MA, Goetsch C, Goetz KT, Hassrick JL, Hückstädt LA, Kuhn CE, Maresh JL, Maxwell SM, McDonald BI, Peterson SH, Simmons SE, Teutschel NM, Villegas-Amtmann S, Yoda K (2012) Foraging behavior and success of a mesopelagic predator in the Northeast Pacific Ocean: insights from a data-rich species, the Northern Elephant Seal. PLoS One 7(5):e36728. doi:10.1371/journal.pone.0036728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schweigert FJ, Strobo WT (1994) Transfer of fat soluble vitamins and PCBs from mother to pups in grey seals (Halichoerus grypus). Comp Biochem Physiol Part C Pharmacol Toxicol Endocrinol 109(2):111–117

    Article  CAS  Google Scholar 

  • Sinensky M (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci 71(2):522–525

    Article  CAS  PubMed  Google Scholar 

  • Strandberg U, Kakela A, Lydersen C, Kovacs KM, Grahl-Nielsen O, Hyvarinen H, Kakela R (2008) Stratification, composition, and function of marine mammal blubber: the ecology of fatty acids in marine mammals. Physiol Biochem Zool 81(4):473–485

    Article  CAS  PubMed  Google Scholar 

  • Strandberg U, Sipilä T, Koskela J, Kunnasranta M, Käkelä R (2011) Vertical fatty acid profiles in blubber of a freshwater ringed seal—comparison to a marine relative. J Exp Marine Biol Ecol 407(2):256–265. doi:10.1016/j.jembe.2011.06.021

    Article  CAS  Google Scholar 

  • Trumble SJ, Noren SR, Cornick LA, Hawke TJ, Kanatous SB (2010) Age-related differences in skeletal muscle lipid profiles of Weddell seals: clues to developmental changes. J Exp Biol 213(10):1676–1684. doi:10.1242/jeb.040923

    Article  CAS  PubMed  Google Scholar 

  • Van Dang QC, Focant M, Mignolet E, Turu C, Froidmont E, Larondelle Y (2011) Influence of the diet structure on ruminal biohydrogenation and milk fatty acid composition of cows fed extruded linseed. Anim Feed Sci Technol 169:1–10

    Article  Google Scholar 

  • Webb PM, Crocker DE, Blackwell SB, Costa DP, Le Boeuf BJ (1998) Effects of buoyancy on the diving behavior of northern elephant seals. J Exp Biol 201:2349–2358

    Google Scholar 

  • Wheatley KE, Nichols PD, Hindell MA, Harcourt RG, Bradshaw CJA (2007) Temporal variation in the vertical stratification of blubber fatty acids alters diet predictions for lactating Weddell seals. J Exp Mar Biol Ecol 352(1):103–113. doi:10.1016/j.jembe.2007.07.005

    Article  CAS  Google Scholar 

  • Wheatley KE, Nichols PD, Hindell MA, Harcourt RG, Bradshaw CJA (2008) Differential mobilization of blubber fatty acids in lactating Weddell seals: evidence for selective use. Physiol Biochem Zool 81(5):651–662

    Article  CAS  PubMed  Google Scholar 

  • Yin W, Carballo-Jane E, McLaren DG, Mendoza VH, Gagen K, Geoghagen NS, McNamara LA, Gorski JN, Eiermann GJ, Petrov A, Wolff M, Tong X, Wilsie LC, Akiyama TE, Chen J, Thankappan A, Xue J, Ping X, Andrews G, Wickham LA, Gai CL, Tu T, Kulick AA, Donnelly MJ, Voronin GO, Rosa R, Cumiskey A-M, Bekkari K, Mitnaul LJ, Puig O, Chen F, Raubertas R, Wong PH, Hansen BC, Koblan KS, Roddy TP, Hubbard BK, Strack AM (2011) Plasma lipid profiling across species for the identification of optimal animal models of human dyslipidemia. J Lipid Res. doi:10.1194/jlr.M019927

    Google Scholar 

  • Zuur AR (2009) AED: data files used in mixed effects models and extensions in ecology with R. vol R package version 1.0

Download references

Acknowledgments

This work was supported by the National Science Foundation under Grant Nos. 0213095 and 0818018 and by Office of Naval Research grant N00014-08-1-1195. Any opinions and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The analytical part of the study was conducted thanks to the financial support of the FNRS (FRFC project), Belgium. We would like to thank C. Champagne, T. de Tillesse and S. Simmons, J. Hassrick, C. Kuhn, P. Robinson and others at UCSC for logistical support and borrowed lab space during sample collection. We would also like to thank Clairol, Inc for marking solution and the rangers at Año Nuevo State Reserve.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melinda A. Fowler.

Additional information

Communicated by H.V. Carey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fowler, M.A., Debier, C., Mignolet, E. et al. Fatty acid mobilization and comparison to milk fatty acid content in northern elephant seals. J Comp Physiol B 184, 125–135 (2014). https://doi.org/10.1007/s00360-013-0787-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-013-0787-7

Keywords

Navigation