Skip to main content

Advertisement

Log in

Discontinuous ammonia excretion and glutamine storage in littoral Oniscidea (Crustacea: Isopoda): testing tidal and circadian models

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

A key evolutionary development facilitating land colonization in terrestrial isopods (Isopoda: Oniscidea) is the intermittent liberation of waste nitrogen as volatile ammonia. Intermittent ammonia release exploits glutamine (Gln) as an intermediary nitrogen store. Here, we explore the relationship between temporal patterns of ammonia release and Gln accumulation in three littoral oniscideans from Southern California. Results are interpreted in terms of water availability, habitat, activity patterns, and ancestry. A two-way experimental design was used to test whether ammonia excretion and Gln accumulation follow a tidal or diel periodicity. Ammonia excretion was studied in the laboratory using chambers with or without available seawater and using an acid trap to collect volatile ammonia. Ligia occidentalis releases ammonia directly into seawater and accumulates Gln during low tide (48.9 ± 6.5 μmol g−1 at low tide, 24.1 ± 3.0 μmol g−1 at high tide), indicating that excretion is tidally constrained. Alloniscus perconvexus and Tylos punctatus can excrete ammonia directly into seawater or utilize volatilization. Both species burrow in sand by day and show a diel excretory pattern, accumulating Gln nocturnally (31.8 ± 2.7 μmol g−1 at dawn and 21.8 ± 2.3 μmol g−1 at dusk for A. perconvexus; 85.7 ± 15.1 μmol g−1 at dawn and 25.4 ± 2.9 μmol g−1 at dusk for T. punctatus) and liberating ammonia diurnally. Glutaminase shows higher activity in terrestrial (0.54–0.86 U g−1) compared to intertidal (0.25–0.31 U g−1) species, consistent with the need to generate high PNH3 for volatilization. The predominant isoform in Armadillidium vulgare is phosphate dependent and maleate independent; phosphate is a plausible regulator in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bigidare RR, Cox JL (1982) Zooplankton metabolic studies in the Ross Sea. Antarctic J US 17:153–154

    Google Scholar 

  • Bigidare RR, King FD (1981) The measurement of glutamate dehydrogenase activity in Praunus flexuosus and its role in the regulation of ammonium excretion. Comp Biochem Physiol 70B:409–413

    Google Scholar 

  • Briggs RW, Radda GK, Thulborn KR (1985) 31P-NMR saturation transfer study of the in vivo kinetics of arginine kinase in Carcinus crab leg muscle. BBA-Mol Cell Res 845:343–348

    CAS  Google Scholar 

  • Brusca GI (1966) Studies on the salinity and humidity tolerance of five species of isopods in a transition from marine to terrestrial life. Bull S Cal Acad Sci 65:146–154

    Google Scholar 

  • Caldwell PC, Lowe AG (1980) Phosphate fluxes in single muscle fibres of the spider crab, Maia squinado. J Physiol 301:401–413

    PubMed  CAS  Google Scholar 

  • Claybrook DL (1983) Nitrogen metabolism. Biol Crustacea 5:163–213

    Google Scholar 

  • Curthoys NP, Lowry OH (1973) The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic, and alkalotic rat kidney. J Biol Chem 248(1):162–168

    PubMed  CAS  Google Scholar 

  • Curthoys NP, Watford M (1995) Regulation of glutaminase activity and glutamine metabolism. Ann Rev Nutr 15(1):133–159

    Article  CAS  Google Scholar 

  • Dresel EIB, Moyle V (1950) Nitrogenous excretion of amphipods and isopods. J Exp Biol 7(2):210–225

    Google Scholar 

  • Durand F, Regnault M (1998) Nitrogen metabolism of two portunid crabs, Carcinus maenas and Necora puber, during prolonged air exposure and subsequent recovery: a comparative study. J Exp Biol 201:2515–2528

    PubMed  CAS  Google Scholar 

  • Durand F, Chausson F, Regnault M (1999) Increases in tissue free amino acid levels in response to prolonged emersion in marine crabs: an ammonia-detoxifying process efficient in the intertidal Carcinus maenas but not in the subtidal Necora puber. J Exp Biol 202(16):2191–2202

    PubMed  CAS  Google Scholar 

  • Erecinska M, Stubbs M, Miyata Y, Ditre CM, Wilson DF (1977) Regulation of cellular metabolism by intracellular phosphate. BBA Bioenergetics 462:20–35

    Article  PubMed  CAS  Google Scholar 

  • Erhardt F (1995) Untersuchungen am Skelet-Muskel-System des Landassel-Pleon (Isopoda: Oniscidea). Ein Beiträge zur phylogenetische-systematischen Stellung der Familie Mesoniscidae. Verhundlungen der Deutschen Zoologischen Gesselschaft 88(1):144

    Google Scholar 

  • Erhardt F (1996) Das pleonale Skelet-Muskel-System und die Phylogenetische-systematische Stellung der Familie Mesoniscidae (Isopoda: Oniscidea). Stuttgarter Beiträge zur Naturkunde Serie A (Biologie) 538:1–40

    Google Scholar 

  • Erhardt F (1997) Das pleonale Skelet-Muskel-System von Titanethes albus (Synocheta) und weiterer Taxa der Onsicidea (Isopoda), mit Schlußfolgerungen zur Phylogenie der Landasseln. Stuttgarter Beiträge zur Naturkunde Serie A (Biologie) 550:1–70

    Google Scholar 

  • Greenaway P (1991) Nitrogenous excretion in aquatic and terrestrial crustaceans. Mem Queensl Mus 31:215–227

    Google Scholar 

  • Hamner W, Smyth M, Mulford E Jr (1969) The behavior and life history of a sand-beach isopod, Tylos punctatus. Ecology 50(3):442–453

    Article  Google Scholar 

  • Hartenstein R (1968) Nitrogen metabolism in the terrestrial isopod, Oniscus asellus. Am Zool 8:507–519

    PubMed  CAS  Google Scholar 

  • Hayes WB (1970) The accuracy of pitfall trapping for the sand-beach isopod Tylos punctatus. Ecology 51(3):514–516

    Article  Google Scholar 

  • Holanov SH, Hendrickson JR (1980) The relationship of sand moisture to burrowing depth of the sand-beach isopod Tylos punctatus Holmes and Gay. J Exp Mar Biol Ecol 46(1):81–88

    Article  Google Scholar 

  • Katz LA, Swain JA, Portman MA, Balaban RS (1988) Intracellular pH and inorganic phosphate content of heart in vivo: a 31P-NMR study. Am J Physiol Heart C 255:189–196

    Google Scholar 

  • King FD, Cucci TL, Bidigare RR (1985) A pathway of nitrogen metabolism in marine decapod crabs. Comp Biochem Physiol B 80(3):401–403

    Article  Google Scholar 

  • Kirby PK, Harbaugh RD (1974) Diurnal patterns of ammonia release in marine and terrestrial isopods. Comp Biochem Physiol A 47(4):1313–1322

    Article  PubMed  CAS  Google Scholar 

  • Kormanik G, Cameron J (1981) Ammonia excretion in animals that breathe water: a review. Mar Biol Lett 2:11–23

    CAS  Google Scholar 

  • Mattern D (2003) New aspects in the phylogeny of the Oniscidea inferred from molecular data. Crustaceana Monographs 2:23–37

    Google Scholar 

  • Mattern D, Schlegel M (2001) Molecular evolution of the small subunit ribosomal RNA in woodlice (Crustacea, Isopoda, Oniscidea) and implications for oniscidean phylogeny. Mol Phyl Evol 18(1):54–65

    Article  CAS  Google Scholar 

  • Michel-Salzat A, Bouchon D (2000) Phylogenetic analysis of mitochondrial LSU rRNA in oniscids. CR Acad Sci 323:827–837

    Article  CAS  Google Scholar 

  • Morris RH, Abbott DP, Haderlie EC (1980) Intertidal invertebrates of California. Stanford University Press, California

    Google Scholar 

  • O’Donovan D, Lotspeich W (1966) Activation of kidney mitochondrial glutaminase by inorganic phosphate and organic acids. Nature 212:930–932

    Article  Google Scholar 

  • Ricketts EF, Calvin J, Hedgpeth JW (1992) Between pacific tides, 5th edn. Stanford University Press, California

    Google Scholar 

  • Schmidt C (2002) Contribution to the phylogenetic system of the Crinocheta (Crustacea, Isopoda). Part 1. (Olibrinidae to Scyphacidae). Zoosyst Evol 78(2):275–352

    Article  Google Scholar 

  • Schmidt C (2003) Contribution to the phylogenetic system of the Crinocheta (Crustacea, Isopoda). Part 2. (Oniscoidea to Armadillidiidae). Zoosyst Evol 79(1):3–179

    Article  Google Scholar 

  • Schmidt C (2008) Phylogeny of the terrestrial isopoda (Oniscidea): a review. Arthropod Syst Phylogeny 66(2):191–226

    Google Scholar 

  • Tabacaru I, Danielopol DL (1996) Phylogenie des isopodes terrestres. CR Acad Sci 319:71–80

    Google Scholar 

  • Wieser W (1972a) Oxygen consumption and ammonia excretion in Ligia beaudiana M.E. Comp Biochem Physiol 43(4):869–876

    Article  CAS  Google Scholar 

  • Wieser W (1972b) A glutaminase in the body wall of terrestrial isopods. Nature 239:288–290

    Article  CAS  Google Scholar 

  • Wieser W, Schweizer G (1970) A re-examination of the excretion of nitrogen by terrestrial isopods. J Exp Biol 52:267–274

    Google Scholar 

  • Wieser W, Schweizer G (1972) Der gehalt an ammoniak und freien aminosäuren, sowie die eigenschaften einer glutaminase bei Porcellio scaber (Isopoda). J Comp Physiol A 81(1):73–88

    Article  CAS  Google Scholar 

  • Wieser W, Schweizer G, Hartenstein R (1969) Patterns in the release of gaseous ammonia by terrestrial isopods. Oecologia 3(3):390–400

    Article  Google Scholar 

  • Wright JC, O’Donnell MJ (1993) Total ammonia concentration and pH of haemolymph, pleon fluid and maxillary urine in Porcellio scaber lattreille (Isopoda, Oniscidea): relationships to ambient humidity and water vapour uptake. J Exp Biol 176(1):233–246

    CAS  Google Scholar 

  • Wright JC, Peña-Peralta M (2005) Diel variation in ammonia excretion, glutamine levels, and hydration status in two species of terrestrial isopods. J Comp Physiol B 175(1):67–75

    Article  PubMed  CAS  Google Scholar 

  • Wright JC, Ting K (2006) Respiratory physiology of the Oniscidea: aerobic capacity and the significance of pleopodal lungs. Comp Biochem Physiol A 145(2):235–244

    Article  Google Scholar 

  • Wright JC, Donnell M, Reichert J (1994) Effects of ammonia loading on Porcellio scaber: glutamine and glutamate synthesis, ammonia excretion and toxicity. J Exp Biol 188(1):143–157

    PubMed  CAS  Google Scholar 

  • Wright JC, Caveney S, O'Donnell MJ, Reichert J (1996) Changes in tissue amino acid levels in response to ammonia-stress in the terrestrial isopod Porcellio scaber Latr. J Exp Zool 274:265–274

    Google Scholar 

Download references

Acknowledgments

We thank Rebecca Abbey and Ken Hsin whose primary studies provided the impetus for this study, and Pomona College for support. Collection of animals was authorized by a Scientific Collecting Permit issued by the California Department of Fish and Game. The experiments comply with the National Institute of Health ‘“Principles of Animal Care”, Publication No. 86-23, 1985, and with current laws of the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan C. Wright.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, M., Wright, J.C. Discontinuous ammonia excretion and glutamine storage in littoral Oniscidea (Crustacea: Isopoda): testing tidal and circadian models. J Comp Physiol B 183, 51–59 (2013). https://doi.org/10.1007/s00360-012-0694-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-012-0694-3

Keywords

Navigation