Skip to main content
Log in

A comparative meta-analysis of maximal aerobic metabolism of vertebrates: implications for respiratory and cardiovascular limits to gas exchange

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Maximal aerobic metabolic rates (MMR) in vertebrates are supported by increased conductive and diffusive fluxes of O2 from the environment to the mitochondria necessitating concomitant increases in CO2 efflux. A question that has received much attention has been which step, respiratory or cardiovascular, provides the principal rate limitation to gas flux at MMR? Limitation analyses have principally focused on O2 fluxes, though the excess capacity of the lung for O2 ventilation and diffusion remains unexplained except as a safety factor. Analyses of MMR normally rely upon allometry and temperature to define these factors, but cannot account for much of the variation and often have narrow phylogenetic breadth. The unique aspect of our comparative approach was to use an interclass meta-analysis to examine cardio-respiratory variables during the increase from resting metabolic rate to MMR among vertebrates from fish to mammals, independent of allometry and phylogeny. Common patterns at MMR indicate universal principles governing O2 and CO2 transport in vertebrate cardiovascular and respiratory systems, despite the varied modes of activities (swimming, running, flying), different cardio-respiratory architecture, and vastly different rates of metabolism (endothermy vs. ectothermy). Our meta-analysis supports previous studies indicating a cardiovascular limit to maximal O2 transport and also implicates a respiratory system limit to maximal CO2 efflux, especially in ectotherms. Thus, natural selection would operate on the respiratory system to enhance maximal CO2 excretion and the cardiovascular system to enhance maximal O2 uptake. This provides a possible evolutionary explanation for the conundrum of why the respiratory system appears functionally over-designed from an O2 perspective, a unique insight from previous work focused solely on O2 fluxes. The results suggest a common gas transport blueprint, or Bauplan, in the vertebrate clade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ackerman RA, White FN (1979) Cyclic carbon dioxide exchange in the turtle Pseudemys scripta. Physiol Zool 52:378–389

    Google Scholar 

  • Axelsson M (1988) The importance of nervous and humoral mechanisms in the control of cardiac performance in the Atlantic cod Gadus morhua at rest and during non-exhaustive exercise. J Exp Biol 137:287–301

    PubMed  CAS  Google Scholar 

  • Axelsson M, Nilsson S (1986) Blood pressure control during exercise in the Atlantic cod, Gadus morhua. J Exp Biol 126:225–236

    PubMed  CAS  Google Scholar 

  • Baudinette RV, Seymour RS, Orbach J (1978) Cardiovascular responses to exercise in the brush-tailed possum. J Comp Physiol B 124:143–147

    Article  Google Scholar 

  • Bayly WM, Hodgson DR, Schulz DA, Dempsey JA, Gollnick PD (1989) Exercise-induced hypercapnia in the horse. J Appl Physiol 67:1958–1966

    PubMed  CAS  Google Scholar 

  • Bishop CM (1997) Heart mass and the maximum cardiac output of birds and mammals: implications for estimating the maximum aerobic power input of flying animals. Philos Trans R Soc Lond Ser B 352:447–456

    Article  Google Scholar 

  • Bishop CM (1999) The maximum oxygen consumption and aerobic scope of birds and mammals: getting to the heart of the matter. Proc R Soc Lond Ser B Biol Sci 266:2275–2281

    Article  CAS  Google Scholar 

  • Brauner CJ, Thorarensen H, Gallaugher P, Farrell AP, Randall DJ (2000) CO2 transport and excretion in rainbow trout (Oncorhynchus mykiss) during graded sustained exercise. Respir Physiol 119:69–82

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Clark TD, Sandblom E, Cox GK, Hinch SG, Farrell AP (2008) Circulatory limits to oxygen supply during an acute temperature increase in the Chinook salmon (Oncorhynchus tshawytscha). Am J Physiol 295:R1631–R1639

    CAS  Google Scholar 

  • Darveau CA, Suarez RK, Andrews RD, Hochachka PW (2002) Allometric cascade as a unifying principle of body mass effects on metabolism. Nature 417:166–170

    Article  PubMed  CAS  Google Scholar 

  • Di Prampero PE (2003) Factors limiting maximal performance in humans. Eur J Appl Physiol 90:420–429

    Article  PubMed  Google Scholar 

  • Dudley R, Gans C (1991) A critique of symmorphosis and optimality models in physiology. Physiol Zool 64:627–637

    Google Scholar 

  • Egginton S (1997) A comparison of the response to induced exercise in red- and white-blooded Antarctic fishes. J Comp Physiol B 167:129–134

    Article  CAS  Google Scholar 

  • Ekblom B, Huot R, Stein EM, Thorstensson AT (1975) Effect of changes in arterial oxygen content on circulation and physical performance. J Appl Physiol 39:71–75

    PubMed  CAS  Google Scholar 

  • Flandrois R, Lacour JR, Osman H (1971) Control of breathing in the exercising dog. Respir Physiol 13:361–371

    Article  PubMed  CAS  Google Scholar 

  • Frappell P, Schultz T, Christian K (2002) Oxygen transfer during aerobic exercise in a varanid lizard Varanus mertensi is limited by the circulation. J Exp Biol 205:2725–2736

    PubMed  Google Scholar 

  • Gallaugher PE (1994) The role of hematocrit in oxygen transport in swimming salmonid fishes. Department of Biological Sciences, Ph.D. Simon Fraser University, Burnaby, p 279

  • Gallaugher PE, Thorarensen H, Kiessling A, Farrell AP (2001) Effects of high intensity exercise training on cardiovascular function, oxygen uptake, internal oxygen transport and osmotic balance in chinook salmon (Oncorhynchus tshawytscha) during critical speed swimming. J Exp Biol 204:2861–2872

    PubMed  CAS  Google Scholar 

  • Garland T Jr, Huey RB (1987) Testing symmorphosis: does structure match functional requirements? Evolution 41:1404–1409

    Article  Google Scholar 

  • Gehr P, Mwangi DK, Ammann A, Maloiy GMO, Taylor CR, Weibel ER (1981) Design of the mammalian respiratory system. V. Scaling morphometric pulmonary diffusing capacity to body mass: wild and domestic mammals. Respir Physiol 44:61–86

    Article  PubMed  CAS  Google Scholar 

  • Gleeson TT, Mitchell GS, Bennett AF (1980) Cardiovascular responses to graded activity in the lizards Varanus and Iguana. Am J Physiol 239:R174–R179

    PubMed  CAS  Google Scholar 

  • Gleeson TT, Mullin WJ, Baldwin KM (1983) Cardiovascular responses to treadmill exercise in rats: effects of training. J Appl Physiol 54:789–793

    PubMed  CAS  Google Scholar 

  • Gonzalez NC, Clancy RL, Wagner PD (1993) Determinants of maximal oxygen uptake in rats acclimated to simulated altitude. J Appl Physiol 75:1608–1614

    PubMed  CAS  Google Scholar 

  • Gonzalez NC, Erwig LP, Painter CF, Clancy RL, Wagner PD (1994) Effects of hematocrit on systemic O2 transport in hypoxic and normoxic exercise in rats. J Appl Physiol 77:1341–1348

    PubMed  CAS  Google Scholar 

  • Gonzalez NC, Clancy RL, Moue Y, Richalet JP (1998) Increasing maximal heart rate increases maximal O2 uptake in rats acclimatized to simulated altitude. J Appl Physiol 84:164–168

    PubMed  CAS  Google Scholar 

  • Gonzalez NC, Kirkton SD, Howlett RA, Britton SL, Koch LG, Wagner HE, Wagner PD (2006) Continued divergence in VO2max of rats artificially selected for running endurance is mediated by greater convective blood O2 delivery. J Appl Physiol 101:1288–1296

    Article  PubMed  Google Scholar 

  • Grubb B, Jorgensen D, Conner M (1983) Cardiovascular changes in the exercising emu. J Exp Biol 104:193–201

    PubMed  CAS  Google Scholar 

  • Hart JS, Roy OZ (1966) Respiratory and cardiac responses to flight in pigeons. Physiol Zool 39:291–306

    Google Scholar 

  • Hedrick MS, Palioca WB, Hillman SS (1999) Effects of temperature and physical activity on blood flow shunts and intracardiac mixing in the toad Bufo marinus. Physiol Biochem Zool 72:509–519

    Article  PubMed  CAS  Google Scholar 

  • Henderson KK, Wagner H, Favret F, Britton SL, Koch LG, Wagner PD, Gonzalez NC (2002) Determinants of maximal O2 uptake in rats selectively bred for endurance running capacity. J Appl Physiol 93:1265–1274

    PubMed  Google Scholar 

  • Hepple RT, Hogan MC, Stary C, Bebout DE, Mathieu-Costello O, Wagner PD (2000) Structural basis of muscle O2 diffusing capacity: evidence from muscle function in situ. J Appl Physiol 88:560–566

    PubMed  CAS  Google Scholar 

  • Hicks JW, Wang T (1996) Functional role of cardiac shunts in reptiles. J Exp Zool 275:204–216

    Article  Google Scholar 

  • Hicks JW, White FN (1992) Ventilation and gas exchange during intermittent ventilation in the American alligator, Alligator mississippiensis. Respir Physiol 88:23–36

    Article  PubMed  CAS  Google Scholar 

  • Hillman SS, Withers PC, Hedrick MS, Kimmel PB (1985) The effects of erythrocythemia on blood viscosity, maximal systemic oxygen transport capacity and maximal rates of oxygen consumption in an amphibian. J Comp Physiol B 155:577–581

    Article  PubMed  CAS  Google Scholar 

  • Hogan MC, Roca J, Wagner PD, West GB (1988) Limitation of maximal O2 uptake and performance by acute hypoxia in in situ dog muscle. J Appl Physiol 65:815–821

    PubMed  CAS  Google Scholar 

  • Hopkins SR, Hicks JW, Cooper TK, Powell FL (1995) Ventilation and pulmonary gas exchange during exercise in the savannah monitor lizard (Varanus exanthematicus). J Exp Biol 198:1783–1789

    PubMed  CAS  Google Scholar 

  • Jones JH, Longworth KE, Lindholm A, Conley KE, Karas RH, Kayar SR, Taylor CR (1989) Oxygen transport during exercise in large mammals. I. Adaptive variation in oxygen demand. J Appl Physiol 67:862–870

    PubMed  CAS  Google Scholar 

  • Karas RH, Taylor CR, Rosler K, Hoppeler H (1987) Adaptive variation in the mammalian respiratory system in relation to energetic demand: V. Limits to oxygen transport by the circulation. Respir Physiol 69:65–79

    Article  Google Scholar 

  • Kiceniuk JW, Jones DR (1977) The oxygen transport system in trout (Salmo gairdneri) during sustained exercise. J Exp Biol 69:247–260

    Google Scholar 

  • Kiley JP, Faraci FM, Fedde MR (1985) Gas exchange during exercise in hypoxic ducks. Respir Physiol 59:105–115

    Article  PubMed  CAS  Google Scholar 

  • Killen SS, Costa I, Brown JA, Gamperl AK (2007) Little left in the tank: metabolic scaling in marine teleosts and its implications for aerobic scope. Proc R Soc Lond Ser B Biol Sci 274:431–438

    Article  Google Scholar 

  • Lai NC, Graham JB, Lowell WR, Shabetai R (1989) Elevated pericardial pressure and cardiac output In the leopard shark Triakis semifasciata during exercise: the role of the pericardioperitoneal canal. J Exp Biol 147:263–277

    Google Scholar 

  • Lai NC, Graham JB, Burnett L (1990) Blood respiratory properties and the effect of swimming on blood gas transport in the leopard shark Triakis semifasciata. J Exp Biol 151:161–173

    Google Scholar 

  • Lillywhite HB, Zippel KC, Farrell AP (1999) Resting and maximal heart rates in ectothermic vertebrates. Comp Biochem Physiol A 124:369–382

    Article  CAS  Google Scholar 

  • Mitchell GS, Gleeson TT, Bennett AF (1981a) Ventilation and acid-base balance during graded activity in lizards. Am J Physiol 240:R29–R37

    PubMed  CAS  Google Scholar 

  • Mitchell GS, Gleeson TT, Bennett AF (1981b) Pulmonary oxygen transport during activity in lizards. Respir Physiol 43:365–375

    Article  PubMed  CAS  Google Scholar 

  • Musch TI, Haidet GC, Ordway GA, Longhurst JC, Mitchell JH (1985) Dynamic exercise training in foxhounds I. Oxygen consumption and hemodynamic responses. J Appl Physiol 59:183–189

    PubMed  CAS  Google Scholar 

  • Peters GW, Steiner DA, Rigoni JA, Mascilli AD, Schnepp RW, Thomas SP (2005) Cardiorespiratory adjustments of homing pigeons to steady wind tunnel flight. J Exp Biol 208:3109–3120

    Article  PubMed  Google Scholar 

  • Piiper J, Meyer M, Worth H, Willmer H (1977) Respiration and circulation during swimming activity in the dogfish Scyliorhinus stellaris. Respir Physiol 30:221–239

    Article  PubMed  CAS  Google Scholar 

  • Richardson RS, Grassi B, Gavin TP, Haseler LJ, Tagore K, Roca J, Wagner PJ (1999) Evidence of O2 supply-dependent VO2max in the exercise-trained human quadriceps. J Appl Physiol 86:1048–1053

    PubMed  CAS  Google Scholar 

  • Roca J, Hogan MC, Story D, Bebout DE, Haab P, Gonzalez R, Ueno O, Wagner PD (1989) Evidence for tissue diffusion limitation of VO2max in normal humans. J Appl Physiol 67:291–299

    PubMed  CAS  Google Scholar 

  • Soofiani NM, Priede IG (1985) Aerobic metabolic scope and swimming performance in juvenile cod, Gadus morhua L. J Fish Biol 26:127–138

    Article  Google Scholar 

  • Stray-Gundersen J, Musch T, Haidet G, Swain D, Ordway G, Mitchell J (1986) The effect of pericardiectomy on maximal oxygen consumption and maximal cardiac output in untrained dogs. Circ Res 58:523–530

    Article  PubMed  CAS  Google Scholar 

  • Taylor CR, Weibel E (1981) Design of the mammalian respiratory system. I. Problem and strategy. Respir Physiol 44:1–10

    Article  PubMed  CAS  Google Scholar 

  • Taylor CR, Weibel ER, Karas RH, Hoppeler H (1987) Adaptive variation in the mammalian respiratory system in relation to energetic demand: VIII. Structural and functional design principles determining the limits to oxidative metabolism. Respir Physiol 69:117–127

    Article  Google Scholar 

  • Thomas SP, Lust MR, Van Riper JV (1984) Ventilation and oxygen extraction in the bat Phyllostomus hastatus during rest and steady flight. Physiol Zool 57:237–250

    Google Scholar 

  • Thompson GG, Withers PC (1997) Standard and maximal metabolic rates of goannas (Squamata: Varanidae). Physiol Zool 70:307–323

    PubMed  CAS  Google Scholar 

  • Wagner PD (1988) An integrated view of the determinants of maximum O2 uptake. In: Gonzalez GC, Fedde MR (eds) Oxygen transfer from atmosphere to tissue. Plenum Press, New York, pp 245–256

    Chapter  Google Scholar 

  • Wagner PD (1993) Algebraic analysis of the determinants of VO2, max. Respir Physiol 93:221–237

    Article  PubMed  CAS  Google Scholar 

  • Wagner PD (1996) Determinants of maximal oxygen transport and utilization. Ann Rev Physiol 58:21–50

    Article  CAS  Google Scholar 

  • Weibel ER (1999) Understanding the limitation of O2 supply through comparative physiology. Respir Physiol 118:85–93

    Article  PubMed  CAS  Google Scholar 

  • Weibel ER, Taylor CR, Hoppeler H (1991) The concept of symmorphosis: a testable hypothesis of structure-function relationship. Proc Natl Acad Sci USA 88:10357–10361

    Article  PubMed  CAS  Google Scholar 

  • Weibel ER, Bacigalupe LD, Schmitt B, Hoppeler H (2004) Allometric scaling of maximal metabolic rate in mammals: muscle aerobic capacity as determinant factor. Respir Physiol Neurobiol 140:115–132

    Article  PubMed  Google Scholar 

  • West NH, Butler PJ, Bevan RM (1992) Pulmonary blood flow at rest and during swimming in the green turtle, Chelonia mydas. Physiol Zool 65:287–310

    Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  PubMed  CAS  Google Scholar 

  • White CR, Terblanche JS, Kabat AP, Blackburn TM, Chown SL, Butler PJ (2008) Allometric scaling of maximal metabolic rate: the influence of temperature. Funct Ecol 22:616–623

    Article  Google Scholar 

  • Withers PC, Hillman SS (1983) The effects of hypoxia on pulmonary function and maximal rates of oxygen consumption in two anuran amphibians. J Comp Physiol B 152:125–129

    Article  Google Scholar 

  • Withers PC, Hillman SS (1988) A steady-state model of maximal oxygen and carbon dioxide transport in anuran amphibians. J Appl Physiol 64:860–868

    PubMed  CAS  Google Scholar 

  • Withers PC, Hillman SS, Simmons LA, Zygmunt AC (1988) Cardiovascular adjustments to enforced activity in the anuran amphibian, Bufo marinus. Comp Biochem Physiol A 89:45–49

    Article  Google Scholar 

Download references

Acknowledgments

We thank G. Brodowicz, L. Crawshaw, B. Buckley, P. Withers and J. Podrabsky for fruitful discussions about the data, and S. Katz for a preliminary review of the manuscript. We also thank the reviewers for thoughtful, provocative input that strengthened the clarity of the manuscript. We gratefully acknowledge funding from the National Science Foundation (IOS-0843082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Hedrick.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hillman, S.S., Hancock, T.V. & Hedrick, M.S. A comparative meta-analysis of maximal aerobic metabolism of vertebrates: implications for respiratory and cardiovascular limits to gas exchange. J Comp Physiol B 183, 167–179 (2013). https://doi.org/10.1007/s00360-012-0688-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-012-0688-1

Keywords

Navigation