Skip to main content
Log in

Sex-specific impact of prenatal stress on growth and reproductive parameters of guinea pigs

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Body condition and reproductive maturation are parameters of reproductive success that are influenced by sexual hormones rising in the circulation during the time of puberty. Various endocrine systems can be programmed by conditions experienced during early life. Stress for instance is supposed to be capable of influencing fetal development, leading to adjustments of offspring’s later physiology. We examined whether prenatal stress (induced by exposure to strobe light) during early- to mid-gestation was capable of affecting later reproductive parameters in guinea pigs (Cavia aperea f. porcellus). Therefore, we measured the levels of testosterone and progesterone from the age of day 12–124 in prenatally stressed (PS, n = 20) and unaffected control animals (n = 24). Furthermore, we determined the timing of puberty and growth. Body weight development revealed significantly faster growth in PS females compared to control animals. The onset of first estrus was slightly earlier in PS females, however not significantly so. Cycle lengths and levels of progesterone differed between groups over the course of time with higher progesterone levels and more constant cycles among PS females compared to control females who displayed marked differences between first and subsequent cycles. Levels of testosterone did not differ between groups. We conclude that prenatal stress accelerates growth and maturity in females, but not in males.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HPA axis:

Hypothalamic–pituitary–adrenal axis

LME model:

Linear mixed effects model

PS:

Prenatally stressed

References

  • Banjanin S, Kapoor A, Matthews SG (2004) Prenatal glucocorticoid exposure alters hypothalamic–pituitary–adrenal function and blood pressure in mature male guinea pigs. J Physiol 558:305–318

    Article  PubMed  CAS  Google Scholar 

  • Barker DJP (2002) Fetal programming of coronary heart disease. Trends Endocrinol Metab 13:364–368

    Article  PubMed  CAS  Google Scholar 

  • Bauer B, Womastek I, Dittami J, Huber S (2008a) The effects of early environmental conditions on reproductive and somatic development of juvenile guinea pigs (Cavia aperea f. porcellus). Gen Comp Endocrinol 155:680–685

    Article  PubMed  CAS  Google Scholar 

  • Bauer B, Palme R, Machatschke IH, Dittami J, Huber S (2008b) Non-invasive measurement of adrenocortical and gonadal activity in male and female guinea pigs (Cavia aperea f. porcellus). Gen Comp Endocrinol 156:482–489

    Article  PubMed  CAS  Google Scholar 

  • Bauer B, Dittami J, Huber S (2009) Effects of nutritional quality during early development on body weight and reproductive maturation in guinea pigs (Cavia aperea f. porcellus). Gen Comp Endocrinol 161:384–389

    Article  PubMed  CAS  Google Scholar 

  • Bertram CE, Hanson MA (2002) Prenatal programming of postnatal endocrine responses by glucocorticoids. Reproduction 124:459–467

    Article  PubMed  CAS  Google Scholar 

  • Blatchley FR, Donovan BT, Ter Haar MB (1976) Plasma progesterone and gonadotrophin levels during the estrous cycle of the guinea pig. Biol Reprod 15:29–38

    Article  PubMed  CAS  Google Scholar 

  • Chahoud I, Paumgartten FJR (2009) Influence of litter size on postnatal growth of rat pups: is there a rationale for litter-size standardization in toxicity studies? Environ Res 109:1021–1027

    Article  PubMed  CAS  Google Scholar 

  • Challis JRG, Heap RB, Illingworth DV (1971) Concentrations of oestrogen and progesterone in the plasma of non-pregnant, pregnant and lactating guinea pigs. J Endocrinol 51:333–348

    Article  PubMed  CAS  Google Scholar 

  • Cooper C, Kuh D, Egger P, Wadsworth M, Barker D (1996) Childhood growth and age at menarche. Br J Obstet Gynaecol 103:814–817

    Article  PubMed  CAS  Google Scholar 

  • D’mello AP, Liu Y (2006) Effects of maternal immobilization stress on birth weight and glucose homeostasis in the offspring. Psychoneuroendocrinology 31:395–406

    Article  PubMed  Google Scholar 

  • Darnaudéry M, Maccari S (2008) Epigenetic programming of the stress response in male and female rats by prenatal restraint stress. Brain Res Rev 57:571–585

    Article  PubMed  Google Scholar 

  • Du M, Tong J, Zha J, Underwood KR, Zhu SP, Ford SP, Nathanielsz PW (2010) Fetal programming of skeletal muscle development in ruminant animals. J Anim Sci 88:E51–E60

    Article  PubMed  CAS  Google Scholar 

  • Dufty AMJr, Clobert J, Møller AP (2002) Hormones, developmental plasticity and adaptation. Trends Ecol Evol 17:190–196

    Article  Google Scholar 

  • Emack J, Kostaki A, Walker CD, Matthews SG (2008) Chronic maternal stress affects growth, behaviour and hypothalamo–pituitary–adrenal function in juvenile offspring. Horm Behav 54:514–520

    Article  PubMed  CAS  Google Scholar 

  • Entringer S, Wüst S, Kumsta R, Layes IM, Nelson EL, Hellhammer DH, Wadhwa PD (2008) Prenatal psychological stress exposure is associated with insulin resistance in young adults. Am J Obstet Gynecol 199:498.e1–498.e7

    Article  Google Scholar 

  • Feder HH, Resko JA, Goy W (1968) Progesterone concentrations in the arterial plasma of guinea-pigs during the oestrous cycle. J Endocrinol 40:505–513

    Article  PubMed  CAS  Google Scholar 

  • Fey K, Trillmich F (2008) Sibling competition in guinea pigs (Cavia aperea f. porcellus): scrambling for mother’s teats is stressful. Behav Ecol Sociobiol 62:321–329

    Article  Google Scholar 

  • Gluckman PD, Hanson MA (2004) Living with the past; evolution, development, and patterns of disease. Science 305:1733–1736

    Article  PubMed  CAS  Google Scholar 

  • Gluckman PD, Hanson MA (2006) Evolution, development and timing of puberty. Trends Endocrinol Metababol 17:7–12

    Article  CAS  Google Scholar 

  • Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008a) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359:61–73

    Article  PubMed  CAS  Google Scholar 

  • Gluckman P, Hanson M, Beedle A, Raubenheimer D (2008b) Fetal and neonatal pathways to obesity. In: Korbonits M (ed) Obesity and metabolism. Front Horm Res, vol 36. Karger, Basel, pp 61–72

  • Götz AA, Wolf M, Stefanski V (2008) Psychosocial maternal stress during pregnancy: effects on reproduction for F0 and F1 generation laboratory rats. Physiol Behav 93:1055–1060

    Article  PubMed  Google Scholar 

  • Graham JD, Clarke CL (1997) Physiological action of progesterone in target tissues. Endocr Rev 18:502–519

    Article  PubMed  CAS  Google Scholar 

  • Harris A, Seckl J (2011) Glucocorticoids, prenatal stress and the programming of disease. Horm Behav 59:279–289

    Article  PubMed  CAS  Google Scholar 

  • Hothorn T, Bretz F, Westfall P, Heiberger RM (2008) Multcomp: simultaneous inference in general parametric models. R package version 1.0-0. http://cran.rproject.org/web/packages/multcomp/vignettes/generalsiminf.pdf

  • Huizink AC, Bartels M, Rose RJ, Pulkkinen L, Eriksson CJP, Kaprio J (2008) Chernobyl exposure as stressor during pregnancy and hormone levels in adolescent offspring. J Epidemiol Community Health 62:e5

    Article  PubMed  CAS  Google Scholar 

  • Ikegami M, Jobe AH, Newnham J, Polik DH, Willet KE, Sly P (1997) Repetitive prenatal glucocorticoids improve lung function and decrease growth in preterm lambs. Am J Respir Crit Care Med 156:178–184

    PubMed  CAS  Google Scholar 

  • Jeppesen LL, Heller KE (1986) Stress effects on circulating eosinophil leukocytes, breeding performance, and reproductive success of ranch mink. Scientifur 10:15–18

    Google Scholar 

  • Kaiser S, Kruijver FPM, Swaab DF, Sachser N (2003) Early social stress in female guinea pigs induces a masculinization of adult behavior and corresponding changes in brain and neuroendocrine function. Behav Brain Res 144:199–210

    Article  PubMed  CAS  Google Scholar 

  • Kapoor A, Matthews SG (2005) Short periods of prenatal stress affect growth, behaviour and hypothalamo–pituitary–adrenal axis activity in male guinea pig offspring. JPhysiol 566:967–977

    Article  CAS  Google Scholar 

  • Kemme K, Kaiser S, Sachser N (2007) Prenatal maternal programming determines testosterone response during social challenge. Horm Behav 51:387–394

    Article  PubMed  CAS  Google Scholar 

  • Kemme K, Kaiser S, Sachser N (2008) Prenatal stress does not impair coping with challenge in later life. Physiol Behav 93:68–75

    Article  PubMed  CAS  Google Scholar 

  • Klaus T (2010) Effects of gestational stress on maternal performance and offspring growth and behaviour in the guinea pig (Cavia aperea f. porcellus) Diploma thesis, Vienna University

  • Laurien-Kehnen C, Trillmich F (2004) Maternal food restriction delays weaning in the guinea pig, Cavia porcellus. Anim Behav 68:303–312

    Article  Google Scholar 

  • Lesage J, Del-Favero F, Leonhardt M, Louvart H, Maccari S, Vieau S, Darnaudery M (2004) Prenatal stress induces intrauterine growth restriction and programmes glucose intolerance and feeding behaviour disturbances in the aged rat. J Endocrinol 181:291–296

    Article  PubMed  CAS  Google Scholar 

  • McCabe L, Marash D, Li A, Matthews SG (2001) Repeated antenatal glucocorticoid treatment decreases hypothalamic corticotrophin releasing hormone mRNA but not corticosteroid receptor mRNA expression in the fetal guinea-pig brain. J Neuroendocrinol 13:425–431

    Article  PubMed  CAS  Google Scholar 

  • Montano MM, Wang MH, vom Saal FS (1993) Sex differences in plasmacorticosterone in mouse fetuses are mediated by differential placental transport from the mother and eliminated by maternal adrenalectomy or stress. J Reprod Fertil 99:283–290

    Article  PubMed  CAS  Google Scholar 

  • Moritz KM, Dodic M, Wintour EM (2003) Kidney development and the fetal programming of adult disease. BioEssays 25:212–220

    Article  PubMed  Google Scholar 

  • Mueller BR, Bale TL (2006) Impact of prenatal stress on long term body weight is dependent on timing and maternal sensitivity. Physiol Behav 88:605–614

    Article  PubMed  CAS  Google Scholar 

  • Nathanielsz PW (2006) Animal models that elucidate basic principles of the developmental origins of adult disease. ILAR J 47:73–82

    PubMed  CAS  Google Scholar 

  • Nieuwenhuizen AG, Rutters F (2008) The hypothalamic–pituitary–adrenal-axis in the regulation of energy balance. Physiol Behav 94:169–177

    Article  PubMed  CAS  Google Scholar 

  • Nyrienda MJ, Seckl JR (1998) Intrauterine events and the programming of adulthood disease: the role of fetal glucocorticoid exposure (review). Int J Mol Med 2:607–614

    Google Scholar 

  • Palme R, Möstl E (1994) Biotin–streptavidin enzyme immunoassay for the determination of oestrogens and androgens in boar faeces. In: Görög S (ed) Advances of steroid analysis ‘93. Akadémiai Kiadó, Budapest, pp 111–117

    Google Scholar 

  • Palmer AC (2011) Nutritional mediated programming of the developing immune system. Adv Nut 2:377–395

    CAS  Google Scholar 

  • Phillips DIW, Barker DJP, Fall CHD, Seckl JR, Whorwood CB, Wood PJ, Walker BR (1998) Elevated plasma cortisol concentrations: a link between low birth weight and the insulin resistance syndrome. J Clin Endocinol Metab 83:757–760

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, the R core team (2007) Nlme: linear and nonlinear mixed effects models. R package version 3.1-89. http://CRAN.R-project.org/package=nlme

  • Politch JA, Herrenkohl LR (1984) Effects of prenatal stress on reproduction in male and female mice. Physiol Behav 32:95–99

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 http://www.R-project.org

  • Ravelli GP, Stein ZS, Susser MW (1976) Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 295:349–353

    Article  PubMed  CAS  Google Scholar 

  • Rhind SM, Rae MT, Brooks AN (2001) Effects of nutrition and environmental factors on the fetal programming of the reproductive axis. Reproduction 122:205–214

    Article  PubMed  CAS  Google Scholar 

  • Rigaudière N, Pelardy G, Robert A, Delost P (1976) Changes in the concentrations of testosterone and androstenedione in the plasma and testis of the guinea-pig from birth to death. J Reprod Fertil 48:291–300

    Article  PubMed  Google Scholar 

  • Rood JP, Weir B (1970) Reproduction in female wild guinea-pigs. Reproduction 23:393–409

    Article  CAS  Google Scholar 

  • Sachser N, Kaiser S (1996) Prenatal social stress masculinizes the females’ behaviour in guinea pigs. Physiol Behav 60:589–594

    Article  PubMed  CAS  Google Scholar 

  • Sachser N, Pröve E (1984) Short-term effects of residence on the testosterone responses to fighting in alpha male guinea pigs. Aggr Behav 10:285–292

    Article  CAS  Google Scholar 

  • Schneider ML, Roughton EC, Koehler A, Lubach GR (1999) Growth and development following prenatal stress in primates: an examination of ontogenetic vulnerability. Child Dev 70:263–274

    Article  PubMed  CAS  Google Scholar 

  • Schöpper H, Palme R, Ruf T, Huber S (2011) Chronic stress in pregnant guinea pigs (Cavia aperea f. porcellus) attenuates long-term stress hormone levels and body weight gain, but not reproductive output. J Comp Physiol B 181:1089–1100

    Article  PubMed  Google Scholar 

  • Schöpper H, Palme R, Ruf T, Huber S (2012) Effects of prenatal stress on hypothalamic–pituitary–adrenal (HPA) axis function over two generations of guinea pigs (Cavia aperea f. porcellus) Gen Comp Endocrinol 176:18–27

    Article  PubMed  Google Scholar 

  • Schwarzenberger F, Tomasova K, Holeckova D, Matern B, Möstl E (1996) Measurement of fecal steroids in the black rhinoceros (Diceros bicornis) using group-specific enzyme immunoassay for 20-oxo-pregnanes. Zoo Biol 15:159–171

    Article  CAS  Google Scholar 

  • Seckl JR (2004) Prenatal glucocorticoids and long-term programming. Eur J Endocrinol 151:U49–U62

    Article  PubMed  CAS  Google Scholar 

  • Sloboda DM, Hart R, Doherty DA, Pennell CE, Hickey M (2007) Age at menarche: influences of prenatal and postnatal growth. J Clin Endocrinol Metab 92:46–50

    Article  PubMed  CAS  Google Scholar 

  • Stockard CR, Papanicolaou GN (1917) The existing of a typical oestrus cycle in the guinea-pig—with a study of histological and physiological changes. Am J Anat 22:225–283

    Article  Google Scholar 

  • Symonds ME, Stephenson T, Gardner DS, Budge H (2007) Long-term effects of nutritional programming of the embryo and fetus: mechanisms and critical windows. Reprod Fertil Dev 19:53–63

    Article  PubMed  Google Scholar 

  • Touma C, Palme R, Sachser N (2001) Different types of oestrus cycle in two closely related South American rodents (Cavia aperea and Galea musteloides) with different social and mating systems. Reproduction 121:791–801

    Article  PubMed  CAS  Google Scholar 

  • Trillmich F, Laurien-Kehnen C, Adrian A, Linke S (2006) Age at maturity in cavies and guinea-pigs (Cavia aperea and Cavia aperea f. porcellus): influence of social factors. J Zool 268:285–294

    Article  Google Scholar 

  • Valencak TG, Tataruch F, Ruf T (2009) Peak energy turnover in lactating European hares: the role of fat reserves. J Exp Biol 212:231–237

    Article  PubMed  CAS  Google Scholar 

  • Westfahl PK, Vekasy MS (1988) Changes in serum and ovarian steroids during reproductive development in the female guinea pig. Biol Reprod 39:1086–1092

    Article  PubMed  CAS  Google Scholar 

  • Woody CO, First NL, Pope AL (1967) Effect of exogenous progesterone on estrous cycle length. J Anim Sci 26:139–141

    PubMed  CAS  Google Scholar 

  • Young WC (1937) The vaginal smear picture, sexual receptivity and the time of ovulation in the guinea pig. Anat Rec 67:305–325

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the anonymous reviewers for their comments that helped to improve this manuscript. The authors thank Edith Klobetz-Rassam for the great support with biochemical analyses. We appreciate the help of Jasmin Höfler in animal care taking. Facilities for animal keeping were kindly provided by the Institute of Virology. This study was financially supported by the Ph.D. Initiative Program BIOREC of the University of Veterinary Medicine, Vienna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Schöpper.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schöpper, H., Klaus, T., Palme, R. et al. Sex-specific impact of prenatal stress on growth and reproductive parameters of guinea pigs. J Comp Physiol B 182, 1117–1127 (2012). https://doi.org/10.1007/s00360-012-0680-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-012-0680-9

Keywords

Navigation