Skip to main content
Log in

Should I stay or should I go?: Physiological, metabolic and biochemical consequences of voluntary emersion upon aquatic hypoxia in the scaleless fish Galaxias maculatus

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Hypoxia represents a significant challenge to most fish, forcing the development of behavioural, physiological and biochemical adaptations to survive. It has been previously shown that inanga (Galaxias maculatus) display a complex behavioural repertoire to escape aquatic hypoxia, finishing with the fish voluntarily emerging from the water and aerially respiring. In the present study we evaluated the physiological, metabolic and biochemical consequences of both aquatic hypoxia and emersion in inanga. Inanga successfully tolerated up to 6 h of aquatic hypoxia or emersion. Initially, this involved enhancing blood oxygen-carrying capacity, followed by the induction of anaerobic metabolism. Only minor changes were noted between emersed fish and those maintained in aquatic hypoxia, with the latter group displaying a higher mean cell haemoglobin content and a reduced haematocrit after 6 h. Calculations suggest that inanga exposed to both aquatic hypoxia and air reduced oxygen uptake and also increased anaerobic contribution to meet energy demands, but the extent of these changes was small compared with hypoxia-tolerant fish species. Overall, these findings add to previous studies suggesting that inanga are relatively poorly adapted to survive aquatic hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almeida-Val VM, Chippari A, Lopes N (2006) Metabolic and physiological adjustments to low oxygen and high temperature in fishes of the Amazon. In: Val A, Almeida-Val VM, Randall DJ (eds) The physiology of tropical fishes. Academic Press, London, pp 464–500

    Google Scholar 

  • Berenbrink M, Koldkjaer P, Kepp O, Cossins AR (2005) Evolution of oxygen secretion in fishes and the emergence of a complex physiological system. Science 307:1752–1757

    Article  PubMed  CAS  Google Scholar 

  • Boutilier RG (2001) Mechanisms of cell survival in hypoxia and hypothermia. J Exp Biol 204:3171–3181

    PubMed  CAS  Google Scholar 

  • Boyd CE, Schmittou HR (1999) Achievement of sustainable aquaculture through environmental management. Aquacult Econ Manag 3:59–69

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brauner CJ, Matey V, Wilson JM, Bernier NJ, Val AL (2004) Transition in organ function during the evolution of air breathing; insights from Arapaimas gigas, an obligate air breathing teleost from the Amazon. J Exp Biol 207:1433–1438

    Article  PubMed  CAS  Google Scholar 

  • Chapman A (2003) Biology of the spotted minnow Galaxias maculatus (Jenyns 1842) (Pisces: Galaxiidae) on the south coast of Western Australia. M. Phil. Thesis: Murdoch University

  • Crocker CE, Cech JJ (1997) Effects of environmental hypoxia on oxygen consumption rate and swimming activity in juvenile white sturgeon, Acipenser transmontanus, in relation to temperature and life intervals. Environ Biol Fish 50:383–389

    Article  Google Scholar 

  • Dalla Via J, Van den Thillart G, Cattani O, Dezwaan A (1994) Influence of long-term hypoxia exposure on the energy metabolism of Solea solea. 2. Intermediary metabolism in blood, liver and muscle. Mar Ecol Prog Ser 111:17–27

    Article  CAS  Google Scholar 

  • Diaz RJ, Rosenberg R (1995) Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr Mar Biol Ann Rev 33:245–303

    Google Scholar 

  • Ellerby DJ (2011) Undulatory swimming. In: Farrell A (ed) Encyclopedia of fish physiology: from genome to environment. Academic Press, London, pp 905–915

    Google Scholar 

  • Finn RN, Rønnestad I, Fyhn HJ (1995) Respiration, nitrogen and energy metabolism of developing yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus L.). Comp Biochem Physiol A 111:647–671

    Article  Google Scholar 

  • Graham JB (1990) Ecological, evolutionary, and physical factors influencing aquatic animal respiration. Am Zool 30:137–146

    Google Scholar 

  • Graham J (1997) Air-breathing fishes; evolution, diversity and adaptation. Academic Press, San Diego

    Google Scholar 

  • Grantham BA, Chan F, Nielsen KJ, Fox DS, Barth JA, Huyer A, Lubchenco J, Menge BA (2004) Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature 429:749–754

    Article  PubMed  CAS  Google Scholar 

  • Hickford MJH, Schiel DR (2011) Synergistic interactions within disturbed habitats between temperature, relative humidity and UVB radiation on egg survival in a diadromous fish. PLoS ONE 6:e24318

    Article  PubMed  CAS  Google Scholar 

  • Hochachka PW (1986) Defence strategies against hypoxia and hypothermia. Science 231:234–241

    Article  PubMed  CAS  Google Scholar 

  • Hochachka PW, Fields J, Mustafa T (1973) Animal life without oxygen: basic biochemical mechanisms. Am Zool 13:543–555

    CAS  Google Scholar 

  • Holeton GF, Randall DJ (1967) Effect of hypoxia upon partial pressure of gases in blood and water afferent and efferent to gills of rainbow trout. J Exp Biol 46:317–327

    PubMed  CAS  Google Scholar 

  • Ishimatsu A, Aguilar NM, Ogawa K, Hishida Y, Takeda T, Oikawa S, Kanda T, Huat KK (1999) Arterial blood gas levels and cardiovascular function during varying environmental conditions in a mudskipper, Periophthalmodon schlosseri. J Exp Biol 202:1753–1762

    PubMed  Google Scholar 

  • Jensen FB, Nikinmaa M, Weber RE (1993) Environmental perturbations of oxygen transport in teleost fishes: causes, consequences, and compensations. In: Rankin JC, Jensen FB (eds) Fish Ecophysiology. Chapman and Hall, London, pp 161–179

    Chapter  Google Scholar 

  • Li J, Xia R, McDowall RM, Lopez JA, Lei GC, Fu CZ (2010) Phylogenetic position of the enigmatic Lepidogalaxias salamandroides with comment on the orders of lower euteleostean fishes. Mol Phylogenet Evol 57:932–936

    Article  PubMed  Google Scholar 

  • Livingstone DR (1983) Invertebrate and vertebrate pathways of anaerobic metabolism: evolutionary consideration. J Geol Soc Lond 140:27–37

    Article  CAS  Google Scholar 

  • Lutz PL, Storey KB (1997) Strategies for dealing with variations in gas tensions-vertebrates and invertebrates. In: Danzler W (ed) Handbook of physiology. Section 13, comparative physiology. American Physiological Society, Oxford University Press, Oxford, pp 1479–1522

    Google Scholar 

  • Mandic M, Sloman KA, Richards JG (2009) Escaping to the surface: a phylogenetically independent analysis of hypoxia-induced respiratory behaviors in sculpins. Physiol Biochem Zool 82:730–738

    Article  PubMed  Google Scholar 

  • Matey V, Richards JG, Wang Y, Wood CM, Rogers J, Davies R, Murray BW, Chen XQ, Du J, Brauner CJ (2008) The effect of hypoxia on gill morphology and ionoregulatory status in the Lake Qinghai scaleless carp, Gymnocypris przewalskii. J Exp Biol 211:1063–1074

    Article  PubMed  CAS  Google Scholar 

  • McCormick SD (1993) Methods for nonlethal gill biopsy and measurement of Na +, K + -ATPase activity. Can J Fish Aquat Sci 50:656–658

    Article  CAS  Google Scholar 

  • McDowall RM (1990) New Zealand freshwater fishes: a natural history and guide. Heinemann Reed, Auckland

    Google Scholar 

  • McDowall RM, Charteris SC (2006) The possible adaptive advantages of terrestrial egg deposition in some fluvial diadromous galaxiid fishes (Teleostei: Galaxiidae). Fish Fisher 7:153–164

    Article  Google Scholar 

  • McKenzie DJ, Steffensen JF, Korsmeyer K, Whiteley NM, Bronzi P, Taylor EW (2007) Swimming alters responses to hypoxia in the Adriatic sturgeon Acipenser naccarii. J Fish Biol 70:651–658

    Article  CAS  Google Scholar 

  • McNeil D, Closs GP (2007) Behavioural responses of a south-east Australian floodplain fish community to gradual hypoxia. Freshwater Biol 52:412–420

    Article  CAS  Google Scholar 

  • Mitchell CP (1989) Laboratory culture of Galaxias maculatus and potential applications. NZ J Mar Freshwater Res 23:325–336

    Article  Google Scholar 

  • Neuenfeldt S, Andersen KH, Hinrichsen HH (2009) Some Atlantic cod Gadus morhua in the Baltic Sea visit hypoxic water briefly but often. J Fish Biol 75:290–294

    Article  PubMed  CAS  Google Scholar 

  • Nikinmaa M, Tiihonen K, Paajaste M (1990) Adrenergic control of red cell pH in salmonid fish: roles of the sodium/proton exchange, Jacobs–Stewart cycle and membrane potential. J Exp Biol 154:257–271

    CAS  Google Scholar 

  • Nilsson GE (2007) Gill remodeling in fish–a new fashion or an ancient secret? J Exp Biol 210:2403–2409

    Article  PubMed  Google Scholar 

  • Nilsson GE, Renshaw GMC (2004) Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark. J Exp Biol 207:3131–3139

    Article  PubMed  CAS  Google Scholar 

  • Randall DJ (2012) Carbon dioxide transport and excretion. In: Farrell A (ed) Encyclopedia of fish physiology: from genome to environment. Academic Press, London, pp 905–915

    Google Scholar 

  • Randall DJ, Perry SF (1992) Catecholamines. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish physiology, vol 12B. Academic Press, London, pp 255–300

    Google Scholar 

  • Regan MD, Brauner CJ (2010) The evolution of Root effect hemoglobins in the absence of intracellular pH protection of the red blood cell: insights from primitive fishes. J Comp Physiol B 180:695–706

    Article  PubMed  CAS  Google Scholar 

  • Richards JG, Wang YS, Brauner CJ, Gonzalez RJ, Patrick ML, Schulte PM, Choppari-Gomes AR, Almeida-Val VM, Val AL (2007) Metabolic and ionoregulatory responses of the Amazonian cichlid, Astronotus ocellatus, to severe hypoxia. J Comp Physiol B 177:361–374

    Article  PubMed  CAS  Google Scholar 

  • Richards JG, Sardella BA, Schulte PM (2008) Regulation of pyruvate dehydrogenase in the common killifish, Fundulus heteroclitus, during hypoxia exposure. Am J Physiol Regul Integr Comp Physiol 295:R979–R990

    Article  PubMed  CAS  Google Scholar 

  • Rummer JL, Roshan-Moniri M, Balfry SK, Brauner CJ (2010) Use it or lose it? Sablefish, Anoplopoma fimbria, a species representing a fifth teleostean group where the bNHE associated with the red blood cell adrenergic stress response has been secondarily lost. J Exp Biol 213:1503–1512

    Article  PubMed  CAS  Google Scholar 

  • Sloman KA, Wood CM, Scott GR, Wood S, Kajimura M, Johannsson OE, Almeida-Val VMF, Val AL (2006) Tribute to R.G. Boutilier: The effect of size on the physiological and behavioural responses of oscar, Astronotus ocellatus, to hypoxia. J Exp Biol 209:1197–1205

    Article  PubMed  Google Scholar 

  • Soares MGM, Menesez NA, Junk WJ (2006) Adaptations of fish to oxygen depletion in a central Amazonian floodplain lake. Hydrobiologia 568:357–367

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. WH Freeman, New York

    Google Scholar 

  • Sollid J, De Angelis P, Gundersen K, Nilsson GE (2003) Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills. J Exp Biol 206:3667–3673

    Article  PubMed  Google Scholar 

  • Sollid J, Weber RE, Nilsson GE (2005) Temperature alters the respiratory surface area of crucian carp Carassius carassius and goldfish Carassius auratus. J Exp Biol 208:1109–1116

    Article  PubMed  Google Scholar 

  • Sundin L, Reid SG, Rantin FT, Milsom WK (2000) Branchial receptors and cardiorespiratory reflexes in a neotropical fish, the tambaqui (Colossoma macropomum). J Exp Biol 203:1225–1239

    PubMed  CAS  Google Scholar 

  • Urbina MA, Forster ME, Glover CN (2011) Leap of faith: Voluntary emersion behaviour and physiological adaptations to aerial exposure in a non-aestivating freshwater fish in response to aquatic hypoxia. Physiol Behav 103:240–247

    Article  PubMed  CAS  Google Scholar 

  • Urbina MA, Glover CN, Forster ME (2012) A novel oxyconforming response in the freshwater fish Galaxias maculatus. Comp Biochem Physiol A 161:301–306

    Article  CAS  Google Scholar 

  • Van Raaij MTM, Bakker E, Nieveen MC, Zirkzee H, Van den Thillart G (1994) Energy status and free fatty acid patterns in tissues of common carp (Cyprinus carpio, L.) and rainbow trout (Oncorhynchus mykiss, L.) during severe oxygen restriction. Comp Biochem Physiol A 109:755–767

    Article  Google Scholar 

  • Van Waarde A (1983) Aerobic and anaerobic ammonia production by fish. Comp Biochem Physiol B 74:675–684

    Article  PubMed  Google Scholar 

  • Wells RMG (2009) Blood-gas transport and haemoglobin function: adaptations for functional and environmental hypoxia. In: Richards J, Farrell A, Brauner C (eds) Hypoxia, fish physiology series, Vol, 27. Academic Press, London, pp 255–299

    Google Scholar 

  • Wells RMG, Baldwin J (1990) Oxygen transport potential in tropical reef fish with special reference to blood viscosity and haematocrit. J Exp Mar Biol Ecol 141:131–143

    Article  Google Scholar 

  • White A, Handler P, Smith EL (1964) Principles of Biochemistry. McGraw Hill, New York

    Google Scholar 

  • Wilcock RJ, Nagels JW, McBride GB, Collier K (1998) Characterisation of lowland streams using a single-saturation diurnal curve analysis model with continuous monitoring data for dissolved oxygen and temperature. NZ J Mar Freshwat Res 32:67–79

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the technical assistance of Gavin Robinson and Renny Bishop. We thank Malcolm Forster for advice and constructive criticism on this manuscript. We are grateful to Dr. Anne Todgham and an anonymous reviewer for their feedback. This work was supported by grants from the Royal Society of New Zealand (Marsden Grant UOC0711) and the Brian Mason Scientific and Technical Trust (2011/22) to CNG. MAU was supported by a Ph.D. scholarship from the Chilean Government, CONICYT. Funding bodies had no direct role in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio A. Urbina.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urbina, M.A., Glover, C.N. Should I stay or should I go?: Physiological, metabolic and biochemical consequences of voluntary emersion upon aquatic hypoxia in the scaleless fish Galaxias maculatus . J Comp Physiol B 182, 1057–1067 (2012). https://doi.org/10.1007/s00360-012-0678-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-012-0678-3

Keywords

Navigation