Skip to main content

Advertisement

Log in

Photo-tropotaxis based on projection through the cerebral commissure in the terrestrial slug Limax

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

In the terrestrial slug, Limax, eyes are located at the tip of the superior tentacles. This animal has long been believed to show negative phototaxis through tropotaxis, i.e., it compares the two light intensities detected by bilateral eyes to move away from a light source. As one of the possible manifestations of such negative phototaxis, a circling movement has been observed: if one of the superior tentacles is removed, the slugs continuously move in the direction of the removed side. However, there has been no evidence demonstrating that this behavior is actually based on negative phototropotaxis. In this study, we showed that the slugs do not exhibit the circling behavior in the absence of light, and that amputation of the cerebral commissure also diminishes the circling behavior under light. We could detect light-evoked responses during electrical recording from the cut edge of the cerebral commissure. Labeling of the optic nerve with neurobiotin also revealed the presence of the commissural fibers that potentially transmit the light information to the contralateral cerebral ganglion. Our study suggests that the slug’s circling behavior is based on phototropotaxis in which the light intensities detected by the bilateral eyes are compared through the cerebral commissure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BSA:

Bovine serum albumin

CC:

Cerebral commissure

CCD:

Charge-coupled device

ChAT:

Cholineacetyltransferase

DAPI:

4′,6-diamino-2-phenylindole

FMRFamide:

Phe-Met-Arg-Phe-NH2

GABA:

γ-aminobutyric acid

5-HT:

5-hydroxytryptamine (serotonin)

PBS:

Phosphate-buffered saline

ST:

Superior tentacle

References

  • Chase R, Croll RP (1981) Tentacular function in snail olfactory orientation. J Comp Physiol 143:357–362

    Article  Google Scholar 

  • Chono K, Fujito Y, Ito E (2002) Non-ocular dermal photoreception in the pond snail Lymnaea stagnalis. Brain Res 951:107–112

    Article  CAS  PubMed  Google Scholar 

  • Croll RP (1983) Gastropod chemoreception. Biol Rev 58:293–319

    Article  Google Scholar 

  • Crow TJ, Alkon DL (1980) Associative behavioral modification in Hermissenda: cellular correlates. Science 209:412–414

    Article  CAS  PubMed  Google Scholar 

  • Crozier WJ, Federighi H (1924a) Phototropic circus movements of Limax affected by temperature. J Gen Physiol 7:151–169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crozier WJ, Federighi H (1924b) Suppression of phototropic circus movements of Limax by strychnine. J Gen Physiol 7:221–224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farley J, Alkon DL (1982) Associative neural and behavioral changes in Hermissenda: consequences of nervous system orientation for light and pairing specificity. J Neurophysiol 48:785–807

    CAS  PubMed  Google Scholar 

  • Friedrich A, Teyke T (1998) Identification of stimuli and input pathways mediating food-attraction conditioning in the snail, Helix. J Comp Physiol A 183:247–254

    Article  Google Scholar 

  • Gomez-Marin A, Louis M (2012) Active sensation during orientation behavior in the Drosophila larva: more sense than luck. Curr Opin Neurobiol 22:208–215

    Article  CAS  PubMed  Google Scholar 

  • Gotow T (1975) Morphology and function of the photoexcitable neurones in the central ganglia of Onchidium verruculatum. J Comp Physiol 99:139–152

    Article  Google Scholar 

  • Gotow T, Tateda H, Kuwabara M (1973) The function of photoexcitable neurons in the central ganglia for behavioral activity of the marine mollusc, Onchidium verruculatum. J Comp Physiol 83:361–376

    Article  Google Scholar 

  • Heldman E, Grossman Y, Jerussi TP, Alkon DL (1979) Cholinergic features of photocereptor synapses in Hermissenda. J Neurophysiol 42:153–165

    CAS  PubMed  Google Scholar 

  • Hisano N, Terada H, Kuwabara M (1972) Photosensitive neurones in the marine pulmonate mollusc Onchidium verruculatum. J Exp Biol 57:651–660

    CAS  PubMed  Google Scholar 

  • Jékely G, Colombelli J, Hausen H, Guy K, Stelzer E, Nédélec F, Arendt D (2008) Mechanism of phototaxis in marine zooplankton. Nature 456:395–400

    Article  PubMed  Google Scholar 

  • Kartelija G, Nedeljkovic N, Radenovic L (2003) Photosensitive neurons in mollusks. Comp Biochem Physiol A 134:483–495

    Article  Google Scholar 

  • Kobayashi S, Hattori M, Elekes K, Ito E, Matsuo R (2010) FMRFamide regulates oscillatory activity of the olfactory center in a slug. Eur J Neurosci 32:1180–1192

    Article  PubMed  Google Scholar 

  • Kobayashi S, Matsuo R, Sadamoto H, Watanabe S, Ito E (2012) Excitatory effects of GABA on procerebrum neurons in a slug. J Neurophysiol 108:989–998

    Article  CAS  PubMed  Google Scholar 

  • Lederhendler II, Alkon DL (1987) Associatively reduced withdrawal from shadows in Hermissenda: a direct behavioral analog of photoreceptor to brief light steps. Behav Neural Biol 47:227–249

    Article  CAS  PubMed  Google Scholar 

  • Matsuo R, Kawaguchi E, Yamagishi M, Amano T, Ito E (2010) Unilateral memory storage in the procerebrum of the terrestrial slug Limax. Neurobiol Learn Mem 93:337–342

    Article  PubMed  Google Scholar 

  • Matsuo R, Kobayashi S, Yamagishi M, Ito E (2011) Two pairs of tentacles and a pair of procerebra: optimized functions and redundant structures in the sensory and central organs involved in olfactory learning of terrestrial pulmonates. J Exp Biol 214:879–886

    Article  PubMed  Google Scholar 

  • Matsuo R, Yamagishi M, Wakiya K, Tanaka Y, Ito E (2013) Target innervation is necessary for neuronal polyploidization in the terrestrial slug Limax. Dev Neurobiol 73:609–620

    Article  CAS  PubMed  Google Scholar 

  • Matsuo R, Kobayashi S, Wakiya K, Yamagishi M, Fukuoka M, Ito E (2014) The cholinergic system in the olfactory center of the terrestrial slug Limax. J Comp Neurol 522:2951–2966

    Article  CAS  PubMed  Google Scholar 

  • Michel S, Schoch K, Stevenson PA (2000) Amine and amino acid transmitters in the eye of the mollusc Bulla gouldiana: an immunocytochemical study. J Comp Neurol 425:244–256

    Article  CAS  PubMed  Google Scholar 

  • Olson LM, Jacklet JW (1985) The circadian pacemaker in the Aplysia eye sends axons throughout the central nervous system. J Neurosci 5:3214–3227

    CAS  PubMed  Google Scholar 

  • Pankey S, Sunada H, Horikoshi T, Sakakibara M (2010) Cyclic nucleotide-gated channels are involved in phototransduction of dermal photoreceptors in Lymnaea stagnalis. J Comp Physiol B 180:1205–1211

    Article  CAS  PubMed  Google Scholar 

  • Pašić M, Kartelija G (1990) Modification of the action potential of Helix pamatia photosensitive neurons by light. Comp Biochem Physiol 95A:73–78

    Google Scholar 

  • Sunada H, Sakaguchi T, Horikoshi T, Lukowiak K, Sakakibara M (2010) The shadow-induced withdrawal response, dermal photoreceptors, and their input to the higher-order interneuron RPeD11 in the pond snail Lymnaea stagnalis. J Exp Biol 213:3409–3415

    Article  PubMed  Google Scholar 

  • Tuchina OP, Zhukov VV, Meyer-Rochow VB (2011) Afferent and efferent pathways in the visceral system of the freshwater snail Planorbarius corneus. Zool Res 32:403–420

    PubMed  Google Scholar 

  • van Duivendoden YA (1982) Non-ocular photoreceptors and photo-orientation in the pond snail Lymnaea stagnalis. J Comp Physiol 149:363–368

    Article  Google Scholar 

  • Xiang Y, Yuan Q, Vogt N, Looger LL, Jan LY, Jan YN (2010) Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 468:921–926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhukov VV (2007) On the problem of retinal transmitters of the freshwater mollusc Lymnaea stagnalis. J Evol Biochem Physiol 43:524–532

    Article  Google Scholar 

Download references

Acknowledgments

We thank Suguru Kobayashi for his helpful advice on the electrophysiological experiments, and Takeshi Morita for his help in the measurement of the irradiance of light. This study was supported by Grants-in-Aid for KAKENHI from the Japan Society for the promotion of science (No. 25440181 to RM), the Yamada Science Foundation (to RM), and the Naito Foundation (to RM). We minimized the number of animals used, and reduced the pain of the animals by deep anesthesia (with cold Mg2+ buffer) when sacrifice.

Conflict of interest

The authors have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryota Matsuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuo, Y., Uozumi, N. & Matsuo, R. Photo-tropotaxis based on projection through the cerebral commissure in the terrestrial slug Limax . J Comp Physiol A 200, 1023–1032 (2014). https://doi.org/10.1007/s00359-014-0954-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-014-0954-7

Keywords

Navigation