Skip to main content
Log in

Vibrissal touch sensing in the harbor seal (Phoca vitulina): how do seals judge size?

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

“Whisker specialists” such as rats, shrews, and seals actively employ their whiskers to explore their environments and extract object properties such as size, shape, and texture. It has been suggested that whiskers could be used to discriminate between different sized objects in one of two ways: (i) to use whisker positions, such as angular position, spread or amplitude to approximate size; or (ii) to calculate the number of whiskers that contact an object. This study describes in detail how two adult harbor seals use their whiskers to differentiate between three sizes of disk. The seals judged size very fast, taking <400 ms. In addition, they oriented their smaller, most rostral, ventral whiskers to the disks, so that more whiskers contacted the surface, complying to a maximal contact sensing strategy. Data from this study supports the suggestion that it is the number of whisker contacts that predict disk size, rather than how the whiskers are positioned (angular position), the degree to which they are moved (amplitude) or how spread out they are (angular spread).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahl AS (1986) The role of vibrissae in behavior—a status review. Vet Res Comm 10:245–268

    Article  CAS  Google Scholar 

  • Brecht M, Preilowski B, Merzenich MM (1997) Functional architecture of the mystacial vibrissae. Behav Brain Res 84:81–97

    Article  CAS  PubMed  Google Scholar 

  • Dehnhardt G (1990) Preliminary results from psychophysical studies on the tactile sensitivity in marine mammals. In: Thomas JA, Kastelein RA (eds) Sensory abilities of cetaceans. Plenum, New York, pp 435–446

    Google Scholar 

  • Dehnhardt G (1994) Tactile size discrimination by a California sea lion (Zalophus californianus) using its mystacial vibrissae. J Comp Physiol A 175:791–800

    Article  CAS  PubMed  Google Scholar 

  • Dehnhardt G, Dücker G (1996) Tactual discrimination of size and shape by a California sea lion (Zalophus californianus). Anim Learn Behav 24:366–374

    Article  Google Scholar 

  • Dehnhardt G, Kaminski A (1995) Sensitivity of the mystacial vibrissae of harbor seals (Phoca vitulina) for size difference of actively touched objects. J Exp Biol 198:2317–2323

    CAS  PubMed  Google Scholar 

  • Dehnhardt G, Sinder M, Sachser N (1997) Tactual discrimination of size by the means of mystacial vibrissae in Harbour seals: in air versus under water. Z Säugetierkd 62:40–43

    Google Scholar 

  • Dehnhardt G, Mauck B, Hyvärinen H (1998) Ambient temperature does not affect the tactile sensitivity of mystacial vibrissae in harbour seals. J Exp Biol 201:3023–3029

    CAS  PubMed  Google Scholar 

  • Dehnhardt G, Mauck B, Hanke W, Bleckmann H (2001) Hydrodynamic trail-following in harbour seals (Phoca vitulina). Science 293:102–104

    Article  CAS  PubMed  Google Scholar 

  • Dykes RW (1975) Afferent fibres from mystacial vibrissae of cats and seals. J Neurophysiol 38:650–662

    CAS  PubMed  Google Scholar 

  • Gellermann LW (1933) Chance orders of alternating stimuli in visual discrimination experiments. J Genet Psychol 42:206–208

    Google Scholar 

  • Grant RA, Mitchinson B, Fox CW, Prescott TJ (2009) Active touch sensing in the rat: anticipatory and regulatory control of whisker movements during surface exploration. J Neurophysiol 101:862–874

    Article  PubMed  Google Scholar 

  • Grant RA, Mitchinson B, Prescott TJ (2012a) The development of whisker control in rats in relation to locomotion. Dev Psychobio 54:151–168

    Article  Google Scholar 

  • Grant RA, Sperber A, Prescott TJ (2012b) The role of orienting in vibrissal touch sensing. Frontiers Behav Neurosci 6:39

    Google Scholar 

  • Hartmann M (2001) Active sensing capabilities of the rat whisker system. Auton Robots 11:249–254

    Google Scholar 

  • Harvey MA, Bermejo R, Zeigler PH (2001) Discriminative whisking in the head-fixed rat: optoelectronic monitoring during tactile detection and discrimination tasks. Som Mot Res 13:211–222

    Google Scholar 

  • Horev G, Said A, Knutsen PM, Pietr M, Yu C, Ahissar E (2011) Motor-sensory convergence in object localization: a comparative study in rats and humans. Phil Trans Roy Soc B 366:3070–3076

    Article  Google Scholar 

  • Hyvärinen H (1989) Diving in darkness: whiskers as sense organs of the Ringed seal (Phoca hispida). J Zool Lond 218:663–678

    Article  Google Scholar 

  • John KT, Goodwin AW, Darian-Smith I (1989) Tactile discrimination of thickness. Exp Brain Res 78:62–68

    Article  CAS  PubMed  Google Scholar 

  • Kastelein RA, Stevens S, Mosterd P (1990) The tactile sensitivity of the mystacial vibrissae of a Pacific walrus (Odobenus rosmarus divergens). Part 2: masking. Aquatic Mammals 16:78–87

    Google Scholar 

  • Knutsen PM, Pietr E, Ahissar M (2006) Haptic object localization in the vibrissal system: behavior and performance. J Neurosci 26:8451–8464

    Article  CAS  PubMed  Google Scholar 

  • Knutsen PM, Biess A, Ahissar E (2008) Vibrissal kinematics in 3D: tight coupling of azimuth, elevation, and torsion across different whisking modes. Neuron 59:35–42

    Article  CAS  PubMed  Google Scholar 

  • Ladygina TF, Popov VV, Supin AY (1985) Somatotopic projections in the cerebral cortex of the fur seal (Callorhinus ursinus). Acad Sci Moskow 17:344–351

    CAS  Google Scholar 

  • Ling JK (1977) Vibrissae of marine mammals. In: Harrison RJ (ed) Functional anatomy of marine mammals, vol 3. Academic Press, London, pp 387–415

    Google Scholar 

  • Mitchinson B, Martin CJ, Grant RA, Prescott TJ (2007) Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact. Proc Biol Sci 274:1035–1041

    Article  PubMed  Google Scholar 

  • Mitchinson B, Grant RA, Arkley KP, Perkon I, Prescott TJ (2011) Active vibrissal sensing in rodents and marsupials. Phil Trans Roy Soc B 366:3037–3048

    Article  Google Scholar 

  • Santello M, Soechting JF (1997) Matching object size by controlling finger span and hand shape. Somatosens Motor Res 14:203–212

    Article  CAS  Google Scholar 

  • Segev R, Schneidman E, Goodhouse J, Berry MJ (2007) Role of eye movements in the retinal code for a size discrimination task. J Neurophysiol 98:1380–1391

    Article  PubMed  Google Scholar 

  • Stevens S, Stone G (1959) Finger span: ratio scale, category scale and JND scale. J Exp Psychol 57:91–95

    Article  CAS  PubMed  Google Scholar 

  • Towal RB, Hartmann MJ (2006) Right-left asymmetries in the whisking behavior of rats anticipate head movements. J Neurosci 26:8838–8846

    Article  CAS  PubMed  Google Scholar 

  • Voigts J, Sakmann B, Celikel T (2008) Unsupervised whisker tracking in unrestrained behaving animals. J Neurophysiol 100:504–515

    Article  PubMed  Google Scholar 

  • Watkins WA, Wartzok D (1985) Sensory biophysics of marine mammals. Mar Mammal Sci 1:219–260

    Article  Google Scholar 

  • Wieskotten S, Dehnhardt G, Mauck B, Miersch L, Hanke W (2010a) Hydrodynamic determination of the moving direction of an artificial fin by a harbor seal (Phoca vitulina). J Exp Biol 213:2194–2200

    Article  CAS  PubMed  Google Scholar 

  • Wieskotten S, Dehnhardt G, Mauck B, Miersch L, Hanke W (2010b) The impact of glide phases on the trackability of hydrodynamic trails in harbour seals (Phoca vitulina). J Exp Biol 213:3734–3740

    Article  CAS  PubMed  Google Scholar 

  • Wieskotten S, Mauck B, Miersch L, Dehnhardt G, Hanke W (2011) Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina). J Exp Biol 214:1922–1930

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Lars Miersch and Dr. Federike Hanke for their help with designing and planning the set-up, also to Dr. Ben Mitchinson for his support with tracking software. Work for this study was funded as part of the BIOTACT FP7 Bio-ICT project, by a Research Stay Grant from the German Academic Exchange Service (DAAD) awarded to R. G., and also by the Volkswagen-Foundation. We thank three anonymous reviewers and Dr Wolf Hanke for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Dehnhardt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 231 kb)

Supplementary material 2 (AVI 1667 kb)

Supplementary material 3 (AVI 6056 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grant, R., Wieskotten, S., Wengst, N. et al. Vibrissal touch sensing in the harbor seal (Phoca vitulina): how do seals judge size?. J Comp Physiol A 199, 521–533 (2013). https://doi.org/10.1007/s00359-013-0797-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-013-0797-7

Keywords

Navigation