Skip to main content
Log in

Neuronal control of pedal sole cilia in the pond snail Lymnaea stagnalis appressa

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

5-HT (serotonin) is a ubiquitous neurotransmitter that produces ciliary beating in gastropods when applied topically, but ciliary beating caused by gastropod serotonergic neurons has been described in only three neuron pairs. We extend these results to the North American Lymnaea stagnalis appressa, which is a different species from the European Lymnaea stagnalis. We describe a non-serotonergic neuron pair, PeV1, which accelerates pedal sole mucociliary transport and a serotonergic neuron pair, PeD7, which slows mucociliary transport. We compare and discuss development and identified neurons in L. s. appressa and in L. stagnalis, which have homologs to L. s. appressa PeD7 and PeV1 neurons. In addition to PeD7 and PeV1 neurons, we test neurons immunoreactive to Tritonia pedal peptide antibodies with negative results for mucociliary transport. In characterizing PeD7 and PeV1 neurons, we find that PeV1 does not excite PeD7. In semi-intact preparations, a strong increase in PeD7 neuron activity occurs during tactile stimulation, but V1 neurons are inhibited during tactile stimulation. Following tactile stimulation, PeV1 neurons show strong activity. This suggests a distinct difference in function of the two neuron pairs, which both have their axons overlying pedal sole ciliary cells. Application of 5-HT to the pedal sole initiates mucociliary transport in 1.4–1.9 s with a time course similar to that seen when stimulating a PeV1 neuron. This result appears to be through a 5-HT1A-like receptor on the pedal sole. We describe a possible external source of 5-HT on the pedal sole from 5-HT immunoreactive granules that are released with mucus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

5-HT:

Serotonin

PeD7:

D7

PeV1:

V1

References

  • Arkett SA, Mackie GO, Singla CL (1987) Neuronal control of ciliary locomotion in a gastropod veliger (Calliostoma). Biol Bull 173:513–526

    Article  Google Scholar 

  • Audesirk G (1978a) Central neuronal control of cilia in Tritonia diamedia. Nature 272:541–543

    Article  PubMed  CAS  Google Scholar 

  • Audesirk G (1978b) Properties of central motor neurons exciting locomotory cilia in Tritonia diomedea. J Comp Physiol 128:259–267

    Article  Google Scholar 

  • Audesirk G, McCaman RE, Willows AOD (1979) The role of serotonin in the control of pedal ciliary activity by identified neurons in Tritonia diomedea. Comp Biochem Physiol C 62:87–91

    Article  Google Scholar 

  • Balog G, Voronezhskaya EE, Hiripi L, Elekes K (2012) Organization of the serotonergic innervation of the feeding (buccal) musculature during the maturation of the pond snail Lymnaea stagnalis: a morphological and biochemical study. J Comp Neurol 520:315–329

    Article  PubMed  CAS  Google Scholar 

  • Bard JA, Zgombick J, Adham N, Vaysse P, Branchek TA, Weinshank RL (1993) Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase. J Biol Chem 268:23422–23426

    PubMed  CAS  Google Scholar 

  • Chemel BR, Roth BL, Armbruster B, Watts VJ, Nichols DE (2006) WAY-100635 is a potent dopamine D4 receptor agonist. Psychopharmacol (Berl) 188:244–251

    Article  CAS  Google Scholar 

  • Cook A (1975) The withdrawal response of a freshwater snail (Lymnaea stagnalis L.). J Exp Biol 62:783–796

    Google Scholar 

  • Croll RP, Chiasson BJ (1989) Postembryonic development of serotoninlike immunoreactivity in the central nervous system of the snail Lymnaea stagnalis. J Comp Neurol 280:122–142

    Article  PubMed  CAS  Google Scholar 

  • Cumin R (1972) Normentafel zur organogenese von Limnaea stagnalis (Gastropoda, Pulmonata) mit besonderer berucksichtigung der mitteldarmdruse. Rev Suisse Zool 79:709–774

    Google Scholar 

  • Deliagina TG, Orlovsky GN (1990) Control of locomotion in the freshwater snail Planorbis corneus: II. Differential control of various zones of the ciliated epithelium. J Exp Biol 152:405–423

    Google Scholar 

  • Denny MW (1989) Invertebrate mucus secretions: functional alternatives to vertebrate paradigms. In: Chantler E, Ratcliffe NA (eds) Mucus and related topics, vol 43. Company of Biologists Limited, Cambridge, pp 337–366

    Google Scholar 

  • Diefenbach TJ, Koehncke NK, Goldberg JI (1991) Characterization and development of rotational behavior in Helisoma embryos: role of endogenous serotonin. J Neurobiol 22:922–934

    Article  PubMed  CAS  Google Scholar 

  • Doran SA, Koss R, Tran CH, Christopher KJ, Gallin WJ, Goldberg JI (2004) Effect of serotonin on ciliary beating and intracellular calcium concentration in identified populations of embryonic ciliary cells. J Exp Biol 207:1415–1429

    Article  PubMed  CAS  Google Scholar 

  • Dunlap K (1977) Localization of calcium channels in Paramecium caudatum. J Physiol 271:119–133

    PubMed  CAS  Google Scholar 

  • Ferguson GP, Benjamin PR (1991a) The whole-body withdrawal response of Lymnaea stagnalis I. Identification of central motoneurones and muscles. J Exp Biol 158:63–95

    PubMed  CAS  Google Scholar 

  • Ferguson GP, Benjamin PR (1991b) The whole-body withdrawal response of Lymnaea stagnalis II. Activation of central motoneurones and muscles by sensory input. J Exp Biol 158:97–116

    PubMed  CAS  Google Scholar 

  • Filla A, Hiripi L, Elekes K (2009) Role of aminergic (serotonin and dopamine) systems in the embryogenesis and different embryonic behaviors of the pond snail, Lymnaea stagnalis. Comp Biochem Physiol C 149:73–82

    Google Scholar 

  • Forster EA, Cliffe IA, Bill DJ, Dover GM, Jones D, Reilly Y, Fletcher A (1995) A pharmacological profile of the selective silent 5-HT1A receptor antagonist, WAY-100635. Eur J Pharmacol 281:81–88

    Article  PubMed  CAS  Google Scholar 

  • Gillette R (2006) Evolution and function in serotonergic systems. Integr Comp Biol 46:838–846

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JI, Koehncke NK, Christopher KJ, Neumann C, Diefenbach TJ (1994) Pharmacological characterization of a serotonin receptor involved in an early embryonic behavior of Helisoma trivolvis. J Neurobiol 25:1545–1557

    Article  PubMed  CAS  Google Scholar 

  • Hiripi L, Elekes K (2010) A 5-HT1A-like receptor is involved in the regulation of the embryonic rotation of Lymnaea stagnalis L. Comp Biochem Physiol C Toxicol Pharmacol 152:57–61

    Article  PubMed  Google Scholar 

  • Jasper JR, Kosaka A, To ZP, Chang DJ, Eglen RM (1997) Cloning, expression and pharmacology of a truncated splice variant of the human 5-HT7 receptor (h5-HT7b). Br J Pharmacol 122:126–132

    Article  PubMed  CAS  Google Scholar 

  • Jiao J, Wang H, Lou W, Jin S, Fan E, Li Y, Han D, Zhang L (2011) Regulation of ciliary beat frequency by the nitric oxide signaling pathway in mouse nasal and tracheal epithelial cells. Exp Cell Res 317:2548–2553

    Article  PubMed  CAS  Google Scholar 

  • König P, Krain B, Krasteva G, Kummer W (2009) Serotonin increases cilia-driven particle transport via an acetylcholine-independent pathway in the mouse trachea. PLoS One 4:e4938

    Article  PubMed  Google Scholar 

  • Koshtoyants KhS, Buznikov GA, Manukhin BN (1961) The possible role of 5-hydroxytryptamine in the motor activity of embryos of some marine gastropods. Comp Biochem Physiol 3:20–26

    Article  PubMed  CAS  Google Scholar 

  • Krobert KA, Bach T, Syversveen T, Kvingedal AM, Levy FO (2001) The cloned human 5-HT7 receptor splice variants: a comparative characterization of their pharmacology, function and distribution. Naunyn Schmiedebergs Arch Pharmacol 363:620–632

    Article  PubMed  CAS  Google Scholar 

  • Kuang S, Goldberg JI (2001) Laser ablation reveals regulation of ciliary activity by serotonergic neurons in molluscan embryos. J Neurobiol 47:1–15

    Article  PubMed  CAS  Google Scholar 

  • Kyriakides M, McCrohan CR, Slade CT, Syed NI, Winlow W (1989) The morphology and electrophysiology of the neurones of the paired pedal ganglia of Lymnaea stagnalis (L.). Comp Biochem Physiol A 93:861–876

    Article  PubMed  CAS  Google Scholar 

  • Lansley AB, Sanderson MJ (1999) Regulation of airway ciliary activity by Ca2+: simultaneous measurement of beat frequency and intracellular Ca2+. Biophys J 77:629–638

    Article  PubMed  CAS  Google Scholar 

  • Levina OV (1973) Fecundity of freshwater Mollusks Lymnaea stagnalis and Radixovata/quantitative patterns, reproduction, shell size, body weight/. Zool Zh 52: 676–684, Russian with English summary

  • Li D, Shirakami G, Zhan X, Johns RA (2000) Regulation of ciliary beat frequency by the nitric oxide-cyclic guanosine monophosphate signaling pathway in rat airway epithelial cells. Am J Respir Cell Mol Biol 23:175–181

    PubMed  CAS  Google Scholar 

  • Lloyd PE, Kupfermann I, Weiss KR (1984) Evidence for parallel actions of a molluscan neuropeptide and serotonin in mediating arousal in Aplysia. Proc Natl Acad Sci USA 81:2934–2937

    Article  PubMed  CAS  Google Scholar 

  • Longley RD (1998) Synthesis of serotonin (5-HT) controls the pre-hatch feeding behavior of the pond snail Lymnaea. Soc Neurosci Abstr 24:1757

    Google Scholar 

  • Longley RD (2008) Development of the 5-HT-like immunoreactive pedal plexus in the pond snail Lymnaea stagnalis appressa. Biol Bull 215:280–294

    Article  PubMed  Google Scholar 

  • Longley RD (2010) Comparison of control of pedal sole cilia in the snails Lymnaea stagnalis appressa and Helisoma trivolvis. Biol Bull 219:283–287

    PubMed  Google Scholar 

  • Longley RD, Longley AJ (1986) Serotonin immunoreactivity of neurons in the gastropod Aplysia californica. J Neurobiol 17:339–358

    Article  PubMed  CAS  Google Scholar 

  • Longley RD, Peterman M (2000) Neural control of foot cilia in Lymnaea stagnalis appressa. Soc Neurosci Abstr 26:985

    Google Scholar 

  • Mackie GO, Singla CL, Thiriot-Quievreux C (1976) Nervous control of ciliary activity in gastropod larvae. Biol Bull 151:182–199

    Article  PubMed  CAS  Google Scholar 

  • Malyshev AY, Balaban PM (2011) Serotonergic cerebral cells control activity of cilia in the foregut of the pteropod mollusk Clione limacina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197:25–32

    Article  PubMed  CAS  Google Scholar 

  • Mapara S, Parries S, Quarrington C, Ahn KC, Galin WJ, Goldberg JI (2008) Identification, molecular structure and expression of two cloned serotonin receptors from the pond snail Helisoma trivolvis. J Exp Biol 211:900–910

    Article  PubMed  CAS  Google Scholar 

  • Marchand P, Marmet L (1983) Binomial smoothing filter: a way to avoid some pitfalls of least squares polynomial smoothing. Rev Sci Instrum 54:1034–1041

    Article  Google Scholar 

  • Marois R, Croll RP (1992) Development of serotoninlike immunoreactivity in the embryonic nervous system of the snail Lymnaea stagnalis. J Comp Neurol 322:255–265

    Article  PubMed  CAS  Google Scholar 

  • Martel JC, Leduc N, Ormière AM, Faucillon V, Danty N, Culie C, Cussac D, Newman-Tancredi A (2007) WAY-100635 has high selectivity for serotonin 5-HT(1A) versus dopamine D(4) receptors. Eur J Pharmacol 574:15–19

    Article  PubMed  CAS  Google Scholar 

  • Maruyama I, Shioda S, Nakai Y (1984) Immunocytochemical localization of serotonin-like immunoreactivities in the ciliated epithelium of the frog palatine mucosa. Acta Anat 120:160–163

    Article  PubMed  CAS  Google Scholar 

  • Maruyama I, Inagaki M, Momose K (1985) The role of serotonin in mucociliary transport system in the ciliated epithelium of frog palatine mucosa. Eur J Pharmacol 106:499–506

    Article  Google Scholar 

  • McKenzie JD, Caunce M, Hetherinton MS (1998) Serotonergic innervation of the foot of the pond snail Lymnaea stagnalis (L.). J Neurocytol 27:459–470

    Article  PubMed  CAS  Google Scholar 

  • Meshcheryakov VN (1990) The common pond snail Lymnaea stagnalis. In: Dettlaff TA, Vassetzky SG (eds) Animal species for developmental studies, vol 1., InvertebratesConsultants Bureau, New York, pp 69–132

    Chapter  Google Scholar 

  • Moroz LL, Winlow W, Turner RW, Bulloch GM, Lukowiak K, Syed NI (1994) Nitric oxide synthase-immunoreactive cells in the CNS and periphery of Lymnaea. NeuroReport 5:1277–1280

    Article  PubMed  CAS  Google Scholar 

  • Nagy T, Elekes K (2000) Embryogenesis of the central nervous system of the pond snail Lymnaea stagnalis L. An ultrastructural study. J Neurocytol 29:43–60

    Article  PubMed  CAS  Google Scholar 

  • Nguyen T, Chin WC, O’Brien JA, Verdugo P, Berger AJ (2001) Intracellular pathways regulating ciliary beating of rat brain ependymal cells. J Physiol 531:131–140

    Article  PubMed  CAS  Google Scholar 

  • Pavlova GA (2010) Muscular waves contribute to gliding rate in the freshwater gastropod Lymnaea stagnalis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 196:241–248

    Article  PubMed  Google Scholar 

  • Pavlova GA, Willows AO, Gaston MR (1999) Serotonin inhibits ciliary transport in esophagus of the nudibranch mollusk Tritonia diomedia. Acta Biol Hung 50:175–184

    PubMed  CAS  Google Scholar 

  • Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes II. Simultaneous spike trains. Biophys J 7:419–440

    Article  PubMed  CAS  Google Scholar 

  • Peroutka SJ (1994) 5-Hydroxytryptamine receptors in vertebrates and invertebrates: why are there so many? Neurochem Int 25:533–536

    Article  PubMed  CAS  Google Scholar 

  • Popescu IR, Frost WN (2002) Highly dissimilar behaviors mediated by a multifunctional network in the marine mollusk Tritonia diomedea. J Neurosci 22:1985–1993

    PubMed  CAS  Google Scholar 

  • Ram JL, Zhang F, Liu LX (1991) Contraction, serotonin-elicited modulation, and membrane currents of dissociated fibers of Aplysia buccal muscle. Biol Bull 180:276–283

    Article  Google Scholar 

  • Ridgway RL, Syed NI, Lukowiak K, Bulloch AGM (1991) Nerve growth factor (NGF) induces sprouting of specific neurons of the snail, Lymnaea stagnalis. J Neurobiol 22:377–390

    Article  PubMed  CAS  Google Scholar 

  • Ruat M, Traiffort E, Leurs R, Tardivel-Lacombe J, Diaz J, Arrang J, Schwartz J (1993) Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc Natl Acad Sci USA 90:8547–8551

    Article  PubMed  CAS  Google Scholar 

  • Saimi Y, Murakami A, Takahashi K (1983a) Electrophysiological correlates of nervous control of ciliary arrest response in the gill epithelial cells of Mytilus. Comp Biochem Physiol A 74:499–506

    Article  Google Scholar 

  • Saimi Y, Murakami A, Takahashi K (1983b) Ciliary electrical responses to intracellular current injection in the ciliated epithelium of the gill of Mytilus. Comp Biochem Physiol A 74:507–511

    Article  Google Scholar 

  • Sakharov DA, Golubev AI, Malyutina LV, Kabotyanski EA, Nezlin LP (1988) Serotonergic control of ciliary locomotion in a turbellarian flatworm. In: Salánki J, Rózsa KS (eds) Symposia Biologica Hungarica, vol 36. Akadémiai Kiadó, Budapest, pp 479–491

    Google Scholar 

  • Sengezer-Inceli M, Süren S, Murathanoglu O, Kaptan E (2004) Immunohistochemical detection of serotonin in the skin of frogs (Rana ridibunda) kept at different temperatures. Biologia (Bratislava) 59:273–281

    Google Scholar 

  • Sprouse J, Reynolds L, Li X, Braselton J, Schmidt A (2004) 8-OH-DPAT as a 5-HT7 agonist: phase shifts of the circadian biological clock through increases in cAMP production. Neuropharm 46:52–62

    Article  CAS  Google Scholar 

  • Stout SL, Wyatt TA, Adams JJ, Sisson JH (2007) Nitric oxide-dependent cilia regulatory enzyme localization in bovine bronchial epithelial cells. J Histochem Cytochem 55:433–442

    Article  PubMed  CAS  Google Scholar 

  • Sugamori KS, Sunahara RK, Guan HC, Bulloch AG, Tensen CP, Seeman P, Niznik HB, Van Tol HH (1993) Serotonin receptor cDNA cloned from Lymnaea stagnalis. Proc Natl Acad Sci USA 90:11–15

    Article  PubMed  CAS  Google Scholar 

  • Syed NI, Winlow W (1989) Morphology and electrophysiology of neurons innervating the ciliated locomotor epithelium in Lymnaea stagnalis (L.). Comp Biochem Physiol A 93:633–644

    Article  Google Scholar 

  • Syed NI, Harrison D, Winlow W (1988) Locomotion in Lymnaea—role of serotonergic motoneurones controlling the pedal cilia. In: Salanki J, Rozsa KS (eds) Symposia biologica hungarica, vol 36. Akadémiai Kiadó, Budapest, pp 387–402

    Google Scholar 

  • Tamm SL, Tamm S (1989) Calcium sensitivity extends the length of ATP-reactivated ciliary axonemes. Proc Natl Acad Sci USA 86:6987–6991

    Article  PubMed  CAS  Google Scholar 

  • Tierney AJ (2001) Structure and function of invertebrate 5-HT receptors: a review. Comp Biochem Physiol A Mol Integr Physiol 128:791–804

    Article  PubMed  CAS  Google Scholar 

  • Willows AO, Pavlova GA, Phillips NE (1997) Modulation of ciliary beat frequency by neuropeptides from identified molluscan neurons. J Exp Biol 200:1433–1439

    PubMed  CAS  Google Scholar 

  • Woodward OM, Willows AOD (2006a) Dopamine modulation of Ca2+ dependent Cl current regulates ciliary beat frequency controlling locomotion in Tritonia diomedea. J Exp Biol 209:2749–2764

    Article  PubMed  CAS  Google Scholar 

  • Woodward OM, Willows AOD (2006b) Nervous control of ciliary beating by Cl, Ca2+ and calmodulin in Tritonia diomedea. J Exp Biol 209:2765–2773

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Director of Friday Harbor Laboratories for use of the facilities, the staff of Friday Harbor Laboratories for assistance, and the Center for Cell Dynamics for use of the confocal microscope during this work. This work was supported in part by Pacific Sciences Institute.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

Experiments performed here comply with the current laws of the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger D. Longley.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1 Cobalt backfill of the ventromedian pedal nerve. (pdf, 90 kB) (PDF 91 kb)

359_2012_770_MOESM2_ESM.pdf

Supplementary Fig. 2 L. s. appressa pedal ganglia and nerves showing immunoreactivity to TPep antibodies. (pdf, 135 kB) (PDF 130 kb)

Supplementary Video 1 Carbon grain movement on the pedal sole after intracellular stimulation of V1, ventromedian pedal nerve connected to posterior part of foot, V1 action potentials on audio track. (Quicktime mov, 3.2 MB, view full screen) (MOV 3285 kb)

Supplementary Video 2 Carbon grain movement on the pedal sole and in the water column when the ventromedian nerve is stimulated, stimulus on audio track. (Quicktime mov, 3.3 MB, view full screen) (MOV 6116 kb)

Supplementary Video 3 Carbon grain movement on the pedal sole after application of 200 μM l−1 5-HT puffs. 5-HT solution contains a low concentration of blue dye. (Quicktime mov, 4.0 MB, view full screen) (MOV 5521 kb)

Supplementary video 4 Carbon grain movement on the pedal sole when neurons that move carbon grains on the lateral edges of the foot are stimulated intracellularly, axons in the inferior pedal nerves, action potentials are on audio track. (Quicktime mov, 4.8 MB, view full screen) (MOV 4669 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longley, R.D., Peterman, M. Neuronal control of pedal sole cilia in the pond snail Lymnaea stagnalis appressa . J Comp Physiol A 199, 71–86 (2013). https://doi.org/10.1007/s00359-012-0770-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-012-0770-x

Keywords

Navigation