Skip to main content
Log in

Dielectric barrier discharge plasma actuator to control turbulent flow downstream of a backward-facing step

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The objective of these experiments was to determine the optimal forcing location and unsteady forcing actuation produced by a single dielectric barrier discharge plasma actuator for controlling the flow downstream of a backward-facing step. The investigated configuration is a 30-mm-height step mounted in a closed-loop wind tunnel. The flow velocity is fixed at 15 m/s, corresponding to a Reynolds number based on the step height equal to 3 × 104 (Re θ  = 1400). The control authority of the plasma discharge is highlighted by the time-averaged modification of the reattachment point and by the effects obtained on the turbulent dynamics of the reattached shear layer. Several locations of the device actuator are considered, and a parametric study of the input signal is investigated for each location. This procedure leads to the definition of an optimal control configuration regarding the minimization of the reattachment length. When the actuator—that produces an electrohydrodynamic force resulting in an electric wind jet—is located upstream the separation point, it can manipulate the first stages of the formation of the turbulent free shear layer and consequently to modify the flow dynamics. Maximum effects have been observed when the high voltage is burst modulated at a frequency f BM = 125 Hz with a duty-cycle of 50 %. This forcing corresponds to a Strouhal number based on the momentum thickness equal to 0.011, a value corresponding to the convective instability or Kelvin–Helmholtz instability of the separated shear layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aider JL, Danet A (2006) Large-eddy simulation study of upstream boundary conditions influence upon a backward-facing step flow. CR Mec 334:447–453

    Article  MATH  Google Scholar 

  • Amitay M, Glezer A (2002) Controlled transients of flow reattachment over stalled airfoils. Int J Heat Fluid Flow 23:690–699

    Article  Google Scholar 

  • Balcon N, Benard N, Lagmich Y, Boeuf JP, Touchard G, Moreau E (2009) Positive and negative sawtooth signals applied to a DBD plasma actuator—influence on the electric wind. J Electrost 67:140–145

    Article  Google Scholar 

  • Benard N, Moreau E (2010) Capabilities of the dielectric barrier discharge plasma actuator for multi-frequency excitations. J Phys D Appl Phys 43:145201

  • Benard N, Moreau E (2013) Response of a circular cylinder wake to a symmetric actuation by non-thermal plasma discharges. Exp Fluids 54:1467

    Article  Google Scholar 

  • Benard N, Moreau E (2014) Electrical and mechanical characteristics of surface ac dielectric barrier discharge plasma actuators applied to airflow control. Exp Fluids 55:1–43

    Article  Google Scholar 

  • Benard N, Debien A, Moreau E (2013) Time-dependent volume force produced by a non-thermal plasma actuator from experimental velocity field. J Phys D Appl Phys 46:245201

    Article  Google Scholar 

  • Bhattacharjee S, Scheelke B, Troutt TR (1986) Modification of vortex interactions in a reattaching separated flow. AIAA J 24(4):623–629

    Article  Google Scholar 

  • Cherry NJ, Hillier R, Latour MEMP (1984) Unsteady measurements in a separated and reattaching flow. J Fluid Mech 144:13–46

    Article  Google Scholar 

  • Chun KB, Sung HJ (1996) Control of turbulent separated flow over a backward-facing step by local forcing. Exp Fluids 21:417–426

    Article  Google Scholar 

  • Corke TC, Enloe CL, Wilkinson SP (2010) Dielectric barrier discharge plasma actuators for flow control. Annu Rev Fluid Mech 42:505–529

    Article  Google Scholar 

  • D’Adamo J, Sosa R, Artana G (2014) Active control of a backward facing step flow with plasma actuators. ASME J Fluids Eng 136:121105

    Article  Google Scholar 

  • Dandois J, Garnier E, Sagaut P (2007) Numerical simulation of active separation control by a synthetic jet. J Fluid Mech 574:25

    Article  MATH  Google Scholar 

  • Driver DM, Seegmiller HL, Marvin JG (1987) Time-dependent behavior of a reattaching shear layer. AIAA J 25(7):914–919

    Article  Google Scholar 

  • Ely R, Little J (2013) Mixing layer excitation by dielectric barrier discharge plasma actuators. AIAA paper 2013-1012

  • Fiedler HE (1987) Coherent structures advances in turbulence. In: Comte-Bellot G, Mathieu J (eds) Advances in Turbulence. Springer, Heidelberg. doi:10.1007/978-3-642-83045-7_37

  • Font GI, Enloe CL, McLaughlin TE (2009) Effect of volumetric momentum addition on the total force production of a plasma actuator. AIAA paper 2009-4285

  • Forte M, Jolibois J, Pons J, Moreau E, Touchard G, Cazalens M (2007) Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control. Exp Fluids 43:917–928

    Article  Google Scholar 

  • Grundmann S, Tropea C (2009) Experimental damping of boundary-layer oscillations using DBD plasma actuators. Int J Heat Fluid Flow 30:394–402

    Article  Google Scholar 

  • Hasan MAZ (1992) The flow over a backward-facing step under controlled perturbation: laminar separation. J Fluid Mech 238:73–96

    Article  Google Scholar 

  • Hudy LM, Naguib AM, Humphreys WM (2003) Wall-pressure-array measurements beneath a separating/reattaching flow region. Phys Fluids 15:706–717

    Article  Google Scholar 

  • Kotsonis K, Ghaemi S (2011) Forcing mechanisms of dielectric barrier discharge plasma actuators at carrier frequency of 625 Hz. J Appl Phys 110:113301

    Article  Google Scholar 

  • Kriegseis J, Möller B, Grundmann S, Tropea C (2012) On performance and efficiency of dielectric barrier discharge plasma actuators for flow control applications. Int J Flow Control 4:125–131

    Article  Google Scholar 

  • Lee I, Sung HJ (2001a) Characteristics of wall pressure fluctuations in separated and reattaching zone of a turbulent separation bubble. Exp Fluids 30:262–272

    Article  Google Scholar 

  • Lee I, Sung HJ (2001b) Characteristics of a wall pressure fluctuations in a separated and reattaching flows over a backward-facing step. Part II: unsteady wavelet analysis. Exp Fluids 30:273–282

    Article  Google Scholar 

  • Lehmann R, Akins D, Little J (2014) Effects of Ns-DBD plasma actuators on turbulent shear layers. AIAA paper 2014-2220

  • Little J, Nishihara M, Adamovich I, Samimy M (2010) High-lift airfoil trailing edge separation control using a single dielectric barrier discharge plasma actuator. Exp Fluids 48:521–537

    Article  Google Scholar 

  • Mathis R, Collin E, Delville J, Bonnet JP (2007) Analysis of a plane turbulent mixing layer manipulated by a localized forced separation. J Turbul 8:56

    Article  Google Scholar 

  • Moreau E (2007) Airflow control by non-thermal plasma actuators. J Phys D Appl Phys 40:605–636

    Article  Google Scholar 

  • Naim A, Greenblatt D, Seifert A, Wygnanski I (2007) Active control of a circular cylinder flow at transitional Reynolds numbers. Flow Turbul Combust 78:383–407

    Article  Google Scholar 

  • Oster D, Wygnanski I (1982) The forced mixing layer between parallel streams. J Fluid Mech 123:91–130

    Article  Google Scholar 

  • Pouryoussefi SG, Mirzaei M, Hajipour M (2014) Experimental study of separation bubble control behind a backward-facing step using plasma actuators. Acta Mech 226(4):1153–1165. doi:10.1007/s00707-014-1245-7

  • Roos FW, Kegelman T (1986) Control of coherent structures in reattaching laminar and turbulent shear layers. AIAA J 24(12):1956–1963

    Article  Google Scholar 

  • Roy S, Wang CC (2009) Bulk flow modification with horseshoe and serpentine plasma actuators. J Phys D Appl Phys 42:032004

  • Seifert A, Pack LG (1999) Oscillatory control of separation at high reynolds numbers. AIAA J 37(9):1062–1071

    Article  Google Scholar 

  • Stephen E, Carter N, Sumerel C, Hsu CY, McLaughlin T (2010) Flow over a backward-facing step under controlled-plasma actuator-induced perturbations. AIAA paper 2010-4591

  • Thomas FO, Corke TC, Iqbal M, Kozlov A, Schatzman D (2009) Optimization of dielectric discharge plasma actuators for active aerodynamic flow control. AIAA J 47:2169–2178

    Article  Google Scholar 

  • Tian Y, Cattafesta LN, Mittal R (2006) Adaptive control of separated flow. AIAA paper 2006-1401

  • Weisbrot I, Wygnanski IJ (1988) On coherent structures in a highly excited mixing layer. J Fluid Mech 195:137–159

    Article  Google Scholar 

  • Wiltse JM, Glezer A (1993) Manipulation of free shear flows using piezoelectric actuators. J Fluid Mech 249:261–285

    Article  Google Scholar 

  • Winant CD, Browand FK (1974) Vortex pairing: the mechanism of turbulent layer growth at moderate Reynolds number. J Fluid Mech 63:237–255

    Article  Google Scholar 

  • Wygnanski IJ, Petersen RA (1987) Coherent motion in excited free shear flows. AIAA J 25:201–213

    Article  Google Scholar 

  • Yoshioka S, Obi S, Masuda S (2001) Organized vortex motion in periodically perturbed turbulent separated flow over a backward-facing step. Int J Heat Fluid Flow 22:301–307

    Article  Google Scholar 

  • Zare-Behtash H, Kontis K, Roy S, (2014) Flow control at subsonic speeds using serpentine plasma actuators. AIAA paper 2014-2812

Download references

Acknowledgments

This work was supported by the 7th Framework programme FP7/2010-2013, MARS (Grant Agreement No. 266326). This work was also partially funded by the French Government programme “Investissements d’Avenir” (LABEX INTERACTIFS, reference ANR-11-LABX-0017-01).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Benard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sujar-Garrido, P., Benard, N., Moreau, E. et al. Dielectric barrier discharge plasma actuator to control turbulent flow downstream of a backward-facing step. Exp Fluids 56, 70 (2015). https://doi.org/10.1007/s00348-015-1939-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-1939-1

Keywords

Navigation