Skip to main content
Log in

Near-field development of a row of round jets at low Reynolds numbers

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This article reports on an experimental investigation of the near-field behavior of interacting jets at low Reynolds numbers (Re = 2125, 3290 and 4555). Two measurement techniques, particle image velocimetry (PIV) and laser Doppler anemometry (LDA), were employed to measure mean velocity and turbulence statistics in the near field of a row of six parallel coplanar round jets with equidistant spacing. The overall results from PIV and LDA measurements show good agreement, although LDA enabled more accurate measurements in the thin shear layers very close to the nozzle exit. The evolution of all six coplanar jets showed initial, merging, and combined regions. While the length of the potential core and the maximum velocity in the merging region are Reynolds number-dependent, the location of the merging points and the minimum velocity between jets were found to be independent of Reynolds number. Side jets at the edges of the coplanar row showed a constant decay rate of maximum velocity after their core region, which is comparable to a single round jet. Jets closer to the center of the row showed reducing velocity decay in the merging region, which led to a higher maximum velocity compared to a single round jet. A comparison with the flow for an in-line array of 6 × 6 round jets showed that the inward bending of streamwise velocity, which exists in the near field of the 6 × 6 jet array, does not occur in the single row of coplanar jets, although both setups have identical nozzle shape, spacing, and Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Absil LHJ (1995) Analysis of the laser Doppler measurement technique for application in turbulent flows. Delft University of Technology, The Netherlands

    Google Scholar 

  • Adrian RJ, Westerweel J (2010) Particle image velocimetry. Cambridge University Press, Cambridge

    Google Scholar 

  • Albrecht H-E (2003) Laser Doppler and phase Doppler measurement techniques. Springer, Berlin

    Book  Google Scholar 

  • Anderson EA, Spall RE (2001) Experimental and numerical investigation of two-dimensional parallel jets. J Fluids Eng Trans ASME 123:401–406

    Article  Google Scholar 

  • Awbi HB (2003) Ventilation of buildings. Spon Press, New York

    Google Scholar 

  • Ball CG, Fellouah H, Pollard A (2012) The flow field in turbulent round free jets. Prog Aeosp Sci 50:1–26. doi:10.1016/j.paerosci.2011.10.002

    Article  Google Scholar 

  • Benedict LH, Gould RD (1996) Towards better uncertainty estimates for turbulence statistics. Exp Fluids 22:129–136. doi:10.1007/s003480050030

    Article  Google Scholar 

  • Boguslawski L, Popiel CO (1979) Flow structure of the free round turbulent jet in the initial region. J Fluid Mech 90:531–539. doi:10.1017/S0022112079002378

    Article  Google Scholar 

  • Böhm B, Stein O, Kempf A, Dreizler A (2010) In-nozzle measurements of a turbulent opposed jet using PIV. Flow Turbul Combust 85:73–93

    Article  MATH  Google Scholar 

  • Bradshaw P (1973) Effects of streamline curvature on turbulent flow. Advisory Group for Aerospace Research and Development (North Atlantic Treaty Organisation)

  • Cho Y, Awbi HB, Karimipanah T (2008) Theoretical and experimental investigation of wall confluent jets ventilation and comparison with wall displacement ventilation. Build Environ 43:1091–1100. doi:10.1016/j.buildenv.2007.02.006

    Article  Google Scholar 

  • Corrsin S (1944) Investigation of the behavior of parallel two-dimensional air jets. NASA No 4H24

  • Crow SC, Champagne FH (1971) Orderly structure in jet turbulence. J Fluid Mech 48:547–591. doi:10.1017/S0022112071001745

    Article  Google Scholar 

  • Deo R (2005) Experimental investigations of the influence of Reynolds number and boundary conditions on a plane air jet. The University of Adelaide, School of Mechanical Engineering

    Google Scholar 

  • Deo RC, Mi J, Nathan GJ (2007) The influence of nozzle-exit geometric profile on statistical properties of a turbulent plane jet. Exp Thermal Fluid Sci 32:545–559. doi:10.1016/j.expthermflusci.2007.06.004

    Article  Google Scholar 

  • Durve A, Patwardhan AW, Banarjee I, Padmakumar G, Vaidyanathan G (2012) Numerical investigation of mixing in parallel jets. Nucl Eng Des 242:78–90. doi:10.1016/j.nucengdes.2011.10.051

    Article  Google Scholar 

  • Fellouah H, Ball CG, Pollard A (2009) Reynolds number effects within the development region of a turbulent round free jet. Int J Heat Mass Transf 52:3943–3954

    Article  Google Scholar 

  • Fujisawa N, Nakamura K, Srinivas K (2004) Interaction of two parallel plane jets of different velocities. J Vis Jpn 7:135–142

    Article  Google Scholar 

  • Geers LFG (2004) Multiple impinging jet arrays: an experimental study on flow and heat transfer. Delft University of Technology, Delft

    Google Scholar 

  • Geers LFG, Tummers MJ, Hanjalić K (2004) Experimental investigation of impinging jet arrays. Exp Fluids 36:946–958. doi:10.1007/s00348-004-0778-2

    Article  Google Scholar 

  • Geers LFG, Tummers MJ, Hanjalic K (2005) Particle imaging velocimetry-based identification of coherent structures in normally impinging multiple jets. Phys Fluids 17:055105–055113

    Article  Google Scholar 

  • Geers LFG, Hanjalic K, Tummers MJ (2006) Wall imprint of turbulent structures and heat transfer in multiple impinging jet arrays. J Fluid Mech 546:255–284

    Article  MATH  Google Scholar 

  • Ghahremanian S, Moshfegh B (2014) Evaluation of RANS models in predicting low Reynolds, free, turbulent round jet. J Fluids Eng 136:011201-011201–011201-011213. doi:10.1115/1.4025363

  • Ghahremanian S, Svensson K, Tummers MJ, Moshfegh B (2014) Near-field mixing of jets issuing from an array of round nozzles. Int J Heat Fluid Flow 47:84–100. doi:10.1016/j.ijheatfluidflow.2014.01.007

    Article  Google Scholar 

  • Harima T, Fujita S, Osaka H (2001) Mixing and diffusion processes of twin circular free jets with various nozzle spacing 5th world conference on experimental heat transfer, fluid mechanics, and thermodynamics, pp 1017–1022

  • Hill BJ (1972) Measurement of local entrainment rate in the initial region of axisymmetric turbulent air jets. J Fluid Mech 51:773–779. doi:10.1017/S0022112072001351

    Article  Google Scholar 

  • Janbakhsh S, Moshfegh B (2014) Experimental investigation of a ventilation system based on wall confluent jets. Build Environ 80:18–31

  • Janbakhsh S, Moshfegh B, Ghahremanian S (2010) A newly designed supply diffuser for industrial premises. Int J Vent 9:59–67

    Google Scholar 

  • Knystautas R (1962) The turbulent jet from a series of holes in line. MERL report 62-1, McGill University, Canada

  • Ko NWM, Lau KK (1989) Flow structures in initial region of two interacting parallel plane jets. Exp Thermal Fluid Sci 2:431–449. doi:10.1016/0894-1777(89)90006-X

    Article  Google Scholar 

  • Kwon SJ, Seo IW (2005) Reynolds number effects on the behavior of a non-buoyant round jet. Exp Fluids 38:801–812. doi:10.1007/s00348-005-0976-6

    Article  Google Scholar 

  • Marsters GF (1979) Measurements in the Flow Field of a Linear Array of Rectangular Nozzles. Journal of Aircraft 17:774–780

    Article  Google Scholar 

  • Mi J, Nathan GJ, Nobes DS (2001) Mixing Characteristics of Axisymmetric Free Jets From a Contoured Nozzle, an Orifice Plate and a Pipe. Journal of Fluids Engineering- Transactions of the ASME 123:878–883

    Article  Google Scholar 

  • Mi JC, Feng BP, Deo RC, Nathan GJ (2009) Effect of exit Reynolds number on self-preservation of a plane jet. Wuli Xuebao/Acta Physica Sinica 58:7756–7764

    Google Scholar 

  • Miller DR, Comings EW (1960) Force-momentum fields in a dual-jet flow. J Fluid Mech 7:237–256. doi:10.1017/S0022112060001468

    Article  MATH  Google Scholar 

  • Morel T (1975) Comprehensive design of axisymmetric wind tunnel contractions. J Fluids Eng 97:225–233

    Article  Google Scholar 

  • Nasr A, Lai JCS (1997) Two parallel plane jets: mean flow and effects of acoustic excitation. Exp Fluids 22:251–260. doi:10.1007/s003480050044

    Article  Google Scholar 

  • Nasr A, Lai JCS (2000) The effects of nozzle spacing on the development of two parallel plane jets. Int J Transp Phenom 2:57–70

    Google Scholar 

  • Obot NT, Graska ML, Trabold TA (1984) The near field behavior of round jets at moderate Reynolds numbers. Can J Chem Eng 62:587–593. doi:10.1002/cjce.5450620503

    Google Scholar 

  • Okamoto T, Yagita M, Watanabe A, Kawamura K (1985) Interaction of twin turbulent circular jet. Bull JSME 28:617–622

    Article  Google Scholar 

  • Olsson M, Fuchs L (1996) Large eddy simulation of the proximal region of a spatially developing circular jet. Phys Fluids 8:2125–2137

    Article  Google Scholar 

  • Pani B, Dash R (1983) Three dimensional single and multiple free jets. J Hydraul Eng 109:254–269. doi:10.1061/(ASCE)0733-9429(1983)109:2(254

    Article  Google Scholar 

  • Quinn WR, Militzer J (1989) Effects of nonparallel exit flow on round turbulent free jets. Int J Heat Fluid Flow 10:139–145. doi:10.1016/0142-727x(89)90008-8

    Article  Google Scholar 

  • Raffel M, Willer C, Wereley S, Kompenhans J (2007) Particle image velocimetry: a practical guide. Springer, Berlin

    Google Scholar 

  • Rajaratnam N (1976) Turbulent jets. Elsevier, Amsterdam

    Google Scholar 

  • Ricou FP, Spalding DB (1961) Measurements of entrainment by axisymmetrical turbulent jets. J Fluid Mech 11:21–32. doi:10.1017/S0022112061000834

    Article  MATH  Google Scholar 

  • Rieth M, Proch F, Stein OT, Pettit MWA, Kempf AM (2014) Comparison of the Sigma and Smagorinsky LES models for grid generated turbulence and a channel flow. Comput Fluids. doi:10.1016/j.compfluid.2014.04.018

    Google Scholar 

  • Sami S, Carmody T, Rouse H (1967) Jet diffusion in the region of flow establishment. J Fluid Mech 27:231–252. doi:10.1017/S0022112067000291

    Article  Google Scholar 

  • Schlichting H, Gersten K (2000) Boundary-layer theory. Springer, New York

    Book  MATH  Google Scholar 

  • Stein O, Böhm B, Dreizler A, Kempf A (2011) Highly-resolved LES and PIV analysis of isothermal turbulent opposed jets for combustion applications. Flow Turbul Combust 87:425–447. doi:10.1007/s10494-010-9310-3

    Article  MATH  Google Scholar 

  • Svensson K, Rohdin P, Moshfegh B, Tummers MJ (2014) Numerical and experimental investigation of the near zone flow field in an array of confluent round jets. Int J Heat Fluid Flow 46:127–146. doi:10.1016/j.ijheatfluidflow.2014.01.004

    Article  Google Scholar 

  • Tanaka E (1970) The interference of two-dimensional parallel jets: 1st report, experiments on dual jet. Bull JSME 13:272–280

    Article  Google Scholar 

  • Tanaka E (1974) The interference of two-dimensional parallel jets: 2nd report, experiments on the combined flow of dual jet. Bull JSME 17:920–927

    Article  Google Scholar 

  • Tatsumi K, Tanaka M, Woodfield PL, Nakabe K (2010) Swirl and buoyancy effects on mixing performance of baffle-plate-type miniature confined multijet. Int J Heat Fluid Flow 31:45–56. doi:10.1016/j.ijheatfluidflow.2009.09.005

    Article  Google Scholar 

  • Thielen L, Jonker HJJ, Hanjalić K (2003) Symmetry breaking of flow and heat transfer in multiple impinging jets. Int J Heat Fluid Flow 24:444–453. doi:10.1016/S0142-727X(03)00042-0

    Article  Google Scholar 

  • Thielen L, Hanjalić K, Jonker H, Manceau R (2005) Predictions of flow and heat transfer in multiple impinging jets with an elliptic-blending second-moment closure. Int J Heat Mass Transf 48:1583–1598. doi:10.1016/j.ijheatmasstransfer.2004.10.025

    Article  MATH  Google Scholar 

  • Todde V, Spazzini PG, Sandberg M (2009) Experimental analysis of low-Reynolds number free jets: evolution along the jet centerline and Reynolds number effects. Exp Fluids 47:279–294

    Article  Google Scholar 

  • Villermaux E, Hopfinger EJ (1994) Periodically arranged co-flowing jets. J Fluid Mech 263:63–92

    Article  Google Scholar 

  • Vouros A, Panidis T (2008) Influence of a secondary, parallel, low Reynolds number, round jet on a turbulent axisymmetric jet. Exp Thermal Fluid Sci 32:1455–1467. doi:10.1016/j.expthermflusci.2008.03.007

    Article  Google Scholar 

  • Yimer I, Becker HA, Grandmaison EW (1996) Development of flow from multiple-jet burners. Can J Chem Eng 74:840–851

    Google Scholar 

  • Yin Z-q, Zhang H-j, Lin J-z (2007) Experimental study on the flow field characteristics in the mixing region of twin jets. J Hydrodyn Ser B 19:309–313

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support received from the University of Gävle (Sweden), Linköping University (Sweden), Stravent Oy (Finland), and the Swedish Research Council (Grant No. 2008-31145-61023-37). The authors are thankful for the assistance received by personnel at the laboratory of Delft University of Technology, and especially to Mr. Bart Hoek and Mr. Erwin de Beus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahriar Ghahremanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghahremanian, S., Svensson, K., Tummers, M.J. et al. Near-field development of a row of round jets at low Reynolds numbers. Exp Fluids 55, 1789 (2014). https://doi.org/10.1007/s00348-014-1789-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1789-2

Keywords

Navigation