Skip to main content
Log in

High velocity impingement of single droplets on a dry smooth surface

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The vertical impact of single, mono disperse water droplets on a dry smooth surface was studied experimentally by means of shadowgraphy. A glass substrate was mounted on a rotating wheel to obtain high impact velocities. The droplets were generated on demand. While the Ohnesorge number was kept constant, Weber number and Reynolds number were varied by adjusting the impact velocity. In all performed experiments, splashing was observed. The distinction of the different measurement series was done by the use of the Weber number. The different Weber numbers were, 3,500, 5,000 and 10,000. Phase-locked images were taken and the temporal evolution of the impact was reconstructed by means of the nondimensional impingement time. The outcome of the measurement was analysed by digital image processing to quantify the distribution of the diameter of the resulting secondary droplets in size and time as well as their velocity, and the total deposited mass fraction remaining on the surface after the impingement. In all cases, the greater part of the impinging primary droplet remained on the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

c :

Nondimensional coefficient (1)

d :

Diameter (m)

F :

Force (N)

H :

Falling height (m)

m :

Mass (kg)

n :

Natural number (1)

R :

Radius of impact (m)

R a :

Surface roughness (m)

r :

Radial position (m)

s :

Arc length (m)

T a :

Approximate period of substitution (s)

t :

Time (s)

V :

Volume (m3)

v :

Velocity (m s−1)

xyz :

Cartesian coordinates (m)

δ :

Depth of field (m)

\(\varepsilon\) :

Segment angle (rad)

η :

Deposited mass fraction (1)

\(\zeta\) :

Weighting factor (1)

μ :

Dynamic viscosity (N s m−2)

ρ :

Density (kg m−3)

σ :

Surface tension (N m−1)

τ k :

Characteristic kinematic time scale (s)

ω :

Angular frequency (s−1)

* :

Quantity explicitly dimensioned

cent:

Centrifugal

crit:

Critical

cor:

Coriolis

drag:

Drag

dyn:

Dynamic

D:

Primary droplet

f:

Frontal

g:

Gas, air

I :

Counter of images

imp:

Impact

ij :

Indices

l:

Liquid

l:

Lateral

l,g:

Interface liquid—gas

max:

Maximum

min:

Minimum

nom:

Nominal

m :

Individual mode

q :

Interval of impingement time

r:

Rotational

sub:

Substrate

tot:

Total

K :

K-parameter

Oh :

Ohnesorge number

Re :

Reynolds number

We :

Weber number

est:

Estimation

voi:

Volume of interest

References

  • Abraham FF (1970) Functional dependence of drag coefficient of a sphere on Reynolds number. Phys Fluids 13(8):2194–2195

    Article  Google Scholar 

  • Armster SQ, Delplanque JP, Rein M, Lavernia EJ (2002) Thermo-fluid mechanisms controlling droplet based materials processes. Int Mater Rev 47(6):265–301

    Google Scholar 

  • Bai C, Gosman AD (1995) Development of methodology for spray impingement simulation. In: SAE International (ed) SAE 1995 World Congress, SAE International, Warrendale and Pa., pp 69–87

  • Bannister M (2000) Drag and dirt deposition mechanisms of external rear view mirrors and techniques used for optimisation. In: SAE International (ed) SAE 2000 World Congress. SAE International, Warrendale and Pa., pp 97–113

  • Driscoll MM, Nagel SR (2011) Ultrafast interference imaging of air in splashing dynamics. Phys Rev Lett 107(15):154502

    Article  Google Scholar 

  • Frohn A, Roth N (2000) Dynamics of droplets. Experimental fluid mechanics. Springer, Berlin

    Book  Google Scholar 

  • Kim KS, Kim SS (1994) Drop sizing and depth-of-field correction in tv imaging. At Sprays 4(1):65–78

    Google Scholar 

  • Kuthada T, Widdecke N, Wiedemann J (2002) Advanced investigation methods on vehicle soiling. In: Motor Industry Research Association (ed) 4th MIRA international vehicle aerodynamics conference, Warwick

  • Mandre S, Mani M, Brenner MP (2009) Precursors to splashing of liquid droplets on a solid surface. Phys Rev Lett 102(13):134502

    Article  Google Scholar 

  • Mani M, Mandre S, Brenner MP (2010) Events before droplet splashing on a solid surface. J Fluid Mech 647:163–185

    Article  MathSciNet  MATH  Google Scholar 

  • Mehdizadeh NZ, Chandra S, Mostaghimi J (2000) Splashing of a small droplet impinging on a solid surface at high velocity. In: Kim JH (ed) Proceedings of the ASME heat transfer division 2000, vol 3. American Society of Mechanical Engineers, New York and NY, HTD, pp 397–405

  • Mehdizadeh NZ, Chandra S, Mostaghimi J (2004) Formation of fingers around the edges of a drop hitting a metal plate with high velocity. J Fluid Mech 510:353–373

    Article  MATH  Google Scholar 

  • Mundo C (1996) Zur Sekundärzerstäubung Newtonscher Fluide an Oberflächen. PhD thesis, Universität Erlangen, Erlangen

  • Mundo C, Sommerfeld M, Tropea C (1994) Experimental studies of the deposition and splashing of small liquid droplets impinging on a flat surface. In: Yule AJ, Dumouchel C (eds) Proceedings of the sixth international conference on liquid atomization and spray systems, vol 1. Begell House, New York, pp 134–141

  • Mundo C, Sommerfeld M, Tropea C (1995) Droplet-wall collisions: experimental studies of the deformation and breakup process. Int J Multiph Flow 21(2):151–173

    Article  MATH  Google Scholar 

  • Palacios J, Gómez P, Zanzi C, López J, Hernández J (2010) Experimental study on the splash/deposition limit in drop impact onto solid surfaces. In: ILASS Europe (ed.) ILASS Europe 2010, BRNO

  • Pan KL, Tseng KC, Wang CH (2010) Breakup of a droplet at high velocity impacting a solid surface. Exp Fluids 48(1):143–156

    Article  Google Scholar 

  • Pasandideh-Fard M, Qiao YM, Chandra S, Mostaghimi J (1996) Capillary effects during droplet impact on a solid surface. Phys Fluids 8(3):650–659

    Article  Google Scholar 

  • Raffel M, Willert CE, Wereley ST, Kompenhans J (2007) Particle image velocimetry: a practical guide ; with 42 tables, 2nd edn. Springer, Berlin

    Google Scholar 

  • Range K, Feuillebois F (1998) Influence of surface roughness on liquid drop impact. J Colloid Interface Sci 203(1):16–30

    Article  Google Scholar 

  • Rein, M (eds) (2002) Drop–surface interactions: courses and lectures, courses and lectures / International Centre for Mechanical Sciences, vol 456. Springer and Springer Wien, Wien

    Google Scholar 

  • Rioboo R, Tropea C, Marengo M (2001) Outcomes from a drop impact on solid surfaces. At Sprays 11(2):155–166

    Google Scholar 

  • Rioboo R, Marengo M, Tropea C (2002) Time evolution of liquid drop impact onto solid, dry surfaces. Exp Fluids 33(1):112–124

    Google Scholar 

  • Roisman IV (2010) On the instability of a free viscous rim. J Fluid Mech 661:206–228

    Article  MathSciNet  MATH  Google Scholar 

  • Roisman IV, Rioboo R, Tropea C (2002) Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc R Soc Lond Ser A 458(2022):1411–1430

    Article  MATH  Google Scholar 

  • Szilder K, Mcilwain S, Lozowski E (2006) Numerical simulation of complex ice shapes on swept wings. In: German Society for Aeronautics and Astronautics (DGLR) (ed) ICAS 2006 proceedings

  • Thoroddsen ST, Sakakibara J (1998) Evolution of the fingering pattern of an impacting drop. Phys Fluids 10(6):1359–1374

    Article  Google Scholar 

  • Thoroddsen ST, Thoraval MJ, Takehara K, Etoh TG (2011) Droplet splashing by a slingshot mechanism. Phys Rev Lett 106(3):034501

    Article  Google Scholar 

  • Ulbrich CW (1983) Natural variations in the analytical form of the raindrop size distribution. J Clim Appl Meteorol 22(10):1764–1775

    Article  Google Scholar 

  • Vander Wal RL, Berger G, Mozes S (2006) The splash/non-splash boundary upon a dry surface and thin fluid film. Exp Fluids 40(1):53–59

    Article  Google Scholar 

  • Weiss DA (1993) Periodischer aufprall monodisperser tropfen gleicher geschwindigkeit auf feste oberflächen. PhD thesis, Universität Göttingen, Göttingen

  • Willis PT, Tattelman P (1989) Drop-size distributions associated with intense rainfall. J Appl Meteorol 28(1):3–15

    Article  Google Scholar 

  • Worthington AM (1908) A study of splashes. Longmans, Green & Co., London [u.a.]

    Google Scholar 

  • Wright WB, Potapczuk (2005) Semi-empirical modeling of SLD physics. NASA/TM-2004-212916

  • Xu L, Zhang WW, Nagel SR (2005) Drop splashing on a dry smooth surface. Phys Rev Lett 94(18):184505

    Article  Google Scholar 

  • Yarin AL (2006) Drop impact dynamics: splashing, spreading, receding, bouncing.... Annu Rev Fluid Mech 38(1):159–192

    Article  MathSciNet  Google Scholar 

  • Yarin AL, Weiss DA (1995) Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J Fluid Mech 283(1):141–173

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully thank Cameron Tropea for his discerning annotation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin W. Faßmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faßmann, B.W., Bansmer, S.E., Möller, T.J. et al. High velocity impingement of single droplets on a dry smooth surface. Exp Fluids 54, 1516 (2013). https://doi.org/10.1007/s00348-013-1516-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-013-1516-4

Keywords

Navigation