Skip to main content
Log in

Identification of velocity fields for geophysical fluids from a sequence of images

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

We propose an algorithm to estimate the motion between two images. This algorithm is based on the nonlinear brightness constancy assumption. The number of unknowns is reduced by considering displacement fields that are piecewise linear with respect to each space variable, and the Jacobian matrix of the cost function to be minimized is assembled rapidly using a finite-element method. Different regularization terms are considered, and a multiscale approach provides fast and efficient convergence properties. Several numerical results of this algorithm on simulated and experimental geophysical flows are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Adrian R (1991) Particle imaging techniques for experimental fluid mechanics. Ann Rev Fluid Mech 23:261–304

    Article  Google Scholar 

  • Alvarez L, Castaño C, Garcia M, Krissian K, Mazorra L, Salgado A, Sanchez J (2007) A variational approach for 3D motion estimation of incompressible PIV flows, scale space and variational methods in computer vision, vol 15. Springer, Berlin, pp 837–847

    Google Scholar 

  • Ananden P (1989) A computational framework and an algorithm for the measurement of visual motion. Int J Comput Vis 2:283–310

    Article  Google Scholar 

  • Arakawa A, Lamb V (1977) Computational design of the basic dynamical processes of the UCLA general circulation model, Methods in Computational Physics, vol 17. Academic Press, London, pp 174–267

    Google Scholar 

  • Asselin R (1972) Frequency filter for time integrations. Mon Wea Rev 100:487–490

    Article  Google Scholar 

  • Beauchemin S, Barron J (1995) The computation of optical flow. ACM Comput Surv 27(3):433–467

    Article  Google Scholar 

  • Black MJ, Anandan P (1993) A framework for the robust estimation of optical flow. In: Proceedings of the Fourth International Conference on Computer Vision, ICCV-93. Berlin, Germany, pp 231–236

  • Black MJ, Anandan P (1996) The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput Vis Image Underst 63(1):75–104

    Article  Google Scholar 

  • Blayo E, Durbiano S, Vidard PA, Le Dimet FX (2003) Reduced order strategies for variational data assimilation in oceanic models. Springer, Berlin

    Google Scholar 

  • Bruhn A, Weickert J, Kohlberger T, Schnörr C (2006) A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. Int J Comput Vis 70(3):257–277

    Article  Google Scholar 

  • Coriolis (2010) Coriolis rotating platform, website http://www.coriolis-legi.org/

  • Corpetti T, Mémin E, Pérez P (2002) Dense estimation of fluid flows. IEEE Trans Pattern Anal Mach Intel 24:365–380

    Article  Google Scholar 

  • Corpetti T, Heitz D, Arroyo G, Mémin E, Santa-Cruz A (2006) Fluid experimental flow estimation based on an optical-flow scheme. Exp Fluid 40(1):80–97

    Article  Google Scholar 

  • Cuzol A, Hellier P, Mémin E (2007) A low dimensional fluid motion estimator. Int J Comput Vis 75:329–349

    Article  Google Scholar 

  • Durbiano S (2001) Vecteurs caractéristiques de modèles océaniques pour la réduction d’ordre en assimilation de données. PhD thesis, University of Grenoble

  • Fehrenbach J, Masmoudi M (2008) A fast algorithm for image registration. C R Acad Sci Paris, Ser I 346:593–598

    MATH  MathSciNet  Google Scholar 

  • Fitzpatrick JM (1985) A method for calculating velocity in time dependent images based on the continuity equation. In: Proceedings of Conference Comparative Vision and Pattern Recognition, San Francisco, USA, pp 78–81

  • Fitzpatrick JM (1988) The existence of geometrical density-image transformations corresponding to object motion. Comput Vis Grap Imag Proc 44:155–174

    Article  Google Scholar 

  • Flor JB, Eames I (2002) Dynamics of monopolar vortices on the beta plane. J Fluid Mech 456:353–376

    Article  MATH  MathSciNet  Google Scholar 

  • Hansen PC (1992) Analysis of discrete ill-posed problems by means of the l-curve. SIAM Rev 34:561–580

    Article  MATH  MathSciNet  Google Scholar 

  • Heitz F, Pérez P, Bouthemy P (1994) Multiscale minimization of global energy functions in some visual recovery problems. CVGIP Imag Underst 59(1):125–134

    Article  Google Scholar 

  • Hellier P, Barillot C, Mémin E, Pérez P (1999) Medical image registration with robust multigrid techniques. In: Proceedings of Second International Conference on Medical Image Computing and Computer-Assisted Intervention, lecture notes in computer science, vol 1679, pp 680–687

  • Horn B, Schunk B (1981) Determining optical flow. Artif Intell 17:185–203

    Article  Google Scholar 

  • Huot E, Isambert T, Herlin I, Berroir JP, Korotaev G (2006) Data assimilation of satellite images within an oceanographic circulation model. In: Proceedings of International Conference on Acoustics, Speech, Signal Processing, Toulouse, France

  • Isambert T, Herlin I, Berroir JP (2007) Fast and stable vector spline method for fluid flow estimation. In: Proceedings of International Conference on Image Processing, San Antonio, USA, pp 505–508

  • Larsen R, Conradsen K, Ersboll BK (1998) Estimation of dense image flow fields in fluids. IEEE Trans Geosci Remote Sens 36(1):256–264

    Article  Google Scholar 

  • Lillie RL (1999) Whole earth geophysics: an introduction textbook for gelologists and geophysicists. Prentice Hall, NJ

  • Lucas B, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: Proceedings of Seventh International Joint Conference on Artificial Intelligence, Vancouver, Canada, pp 674–679

  • Ma J, Antoniadis A, Le Dimet FX (2006) Curvlets-based snake for multiscale detection and tracking of geophysical fluids. IEEE Trans Geosci Remote Sens 45(1):3626–3638

    Article  Google Scholar 

  • Mémin E, Perez P (1998) Optical flow estimation and object-based segmentation with robust techniques. IEEE Trans Imag Proc 7(5):703–719

    Article  Google Scholar 

  • Mémin E, Pérez P (2002) Hierarchical estimation and segmentation of dense motion fields. Int J Comput Vis 46(2):129–155

    Article  MATH  Google Scholar 

  • Michel Y, Bouttier F (2006) Automatic tracking of dry intrusions on satellite water vapour imagery and model output. Quart J Roy Meteor Soc 132:2257–2276

    Article  Google Scholar 

  • Papenberg N, Bruhn A, Brox T, Didas S, Weickert J (2006) Highly accurate optic flow computation with theoretically justified warping. Int J Comput Vis 67(2):141–158

    Article  Google Scholar 

  • Ruhnau P, Kohlberger T, Nobach H, Schnörr C (2005) Variational optical flow estimation for particle image velocimetry. Exp Fluids 38(1):21–32

    Article  Google Scholar 

  • Tikhonov AN, Arsenin VY (1977) Solution of Ill-posed Problems. Winston & Sons, Washington

    Google Scholar 

  • Yuan J, Schnörr C, Mémin E (2007) Discrete orthogonal decomposition and variational fluid flow estimation. J Math Imag Vis 28(1):67–80

    Article  Google Scholar 

Download references

Acknowledgments

We greatly acknowledge the MOISE research project of INRIA Rhône-Alpes (France) and the Coriolis project of LEGI (Grenoble, France) for providing us the synthetic and real data, respectively. This work is partly done within the MOISE INRIA team and supported by the French National Research Agency (ANR ADDISA). The first author was member of Institut de Mathématiques de Toulouse (Université Paul Sabatier, France) when he contributed to this paper. The authors also thank the referees for their useful comments and perspectives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Auroux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auroux, D., Fehrenbach, J. Identification of velocity fields for geophysical fluids from a sequence of images. Exp Fluids 50, 313–328 (2011). https://doi.org/10.1007/s00348-010-0926-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-010-0926-9

Keywords

Navigation