Skip to main content
Log in

Investigation of a turbulent spot using multi-plane stereo particle image velocimetry

  • Original
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The multi-plane stereo particle image velocimetry (MSPIV) technique has been applied to an investigation of the spatial and temporal development of turbulent spots in a laminar flat-plate boundary-layer flow with a slight adverse pressure gradient. On the basis of a large number of evaluated instantaneous 3- and 2-component velocity-vector fields, measured synchronously and separated in space, or with different time separations in one or two planes, the technique enabled the determination of several statistical quantities of fluid mechanical significance. The shape and role of coherent substructures for the growth and turbulent mixing of the spot were the focus of this investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Abbreviations

x, y, z :

stream-, normal-, and spanwise coordinate

U :

freestream velocity (U =7 m/s)

Re :

Reynolds number, =Re x 1/2

u, v, w :

instantaneous velocity components

u′, v′, w′:

fluctuation velocity components

Q-1,...,4:

quadrants of Reynolds stress u v'

PDF:

probability density function

R ii :

space–(time)-correlation function

λ :

wavelength of laser light

TE:

trailing edge of turbulent spot

LE:

leading edge of turbulent spot

References

  • Adrian RJ, Meinhart CD, Tomkins CD (2000) Vortex organization in the outer region of the turbulent boundary layer. J Fluid Mech 422:1–54

    Article  CAS  Google Scholar 

  • Cantwell B, Coles D, Dimotakis P (1977) Structure and entrainment in the plane of symmetry of a turbulent spot. J Fluid Mech 87:641–672

    Google Scholar 

  • Coles D, Savas O (1980) Interaction of regular patterns of turbulent spots in a laminar boundary layer. In: Eppler R, Fasel H (eds) Laminar–Turbulent Transition, IUTAM Symposium, Stuttgart, Germany, 1979. Springer-Verlag, Berlin Heidelberg New York, pp 277–288

  • Emmons HW (1951) The laminar–turbulent transition in a boundary layer, I. J Aeronaut Sci 18:490–498

    Google Scholar 

  • Gad-el-Hak M, BlackwelderRF, Riley JJ (1981) On the growth of turbulent regions in laminar boundary-layers. J Fluid Mech 110:73–95

    CAS  Google Scholar 

  • Kähler CJ, Kompenhans J (1999) Multiple plane stereo PIV—technical realization and fluid-mechanical significance. In: Proceedings of the Third International Workshop on PIV, 16–18 September 1999, University of Santa Barbara, USA

  • Kähler CJ (2000) Multiplane stereo PIV—recording and evaluation methods. In: Proceedings EUROMECH 411, 29–31 May 2000, Rouen, France

  • Matsui T (1980) Visualization of turbulent spots in the boundary layer along a flat plate in a water flow. In: Eppler R, Fasel H (eds) Laminar–Turbulent Transition, IUTAM Symposium, Stuttgart, Germany, 1979. Springer-Verlag, Berlin Heidelberg New York, pp 289–296

  • Meinhart CD (1994) Investigation of turbulent boundary-layer structure using particle-image velocimetry. Thesis, University of Illinois at Urbana-Champaign

  • Robinson SK (1991) The kinematics of turbulent boundary-layer structure. NASA Technical Memorandum 103859

  • Rotta JC (1972) Turbulente Strömungen, Eine Einführung in die Theorie und ihre Anwendung. B.G. Teubner Verlag, Stuttgart

  • Sankaran R, Sokolov M, Antonia RA (1987) Substructures in a turbulent spot. J Fluid Mech 197:389–414

    Google Scholar 

  • Schoppa W, Hussain F (1997) Genesis and dynamics of coherent structures in near-wall turbulence. In: Panton R (ed) Self-sustaining mechanisms of wall turbulence. WIT Press, Southampton, 385–422

  • Schröder A (2001) Untersuchung der Strukturen von künstlich angeregten transitionellen Plattengrenzschichtströmungen mit Hilfe der Stereo und Multiplane Particle Image Velocimetry, http://webdoc.sub.gwdg.de/diss/2001/schroeder/schroeder.pdf

  • Singer BA (1996) Characteristics of a young turbulent spot. Phys Fluids 8:509–521

    CAS  Google Scholar 

  • Tufo HM, Fischer PF, Papka ME, Blom K (1999) Numerical simulation and immersive visualization of hairpin vortices. http://www-unix.mcs.anl.gov/appliedmath/Flow/cfd.html

  • Wygnanski I, Zilberman M, Haritonidis JH (1982) On the spreading of a turbulent spot in the absence of a pressure gradient. J Fluid Mech 123:69–90

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Kähler and H. Eckelmann for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Schröder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröder, A., Kompenhans, J. Investigation of a turbulent spot using multi-plane stereo particle image velocimetry. Exp Fluids 36, 82–90 (2004). https://doi.org/10.1007/s00348-003-0644-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-003-0644-7

Keywords

Navigation