Skip to main content
Log in

Transkorneale Elektrostimulation bei primärem Offenwinkelglaukom

Transcorneal electrical stimulation in primary open angle glaucoma

  • Originalien
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Neuere Berichte über die Wirksamkeit transkornealer elektrischer Stimulation bei Patienten und Versuchstieren mit neurodegenerativen Augenerkrankungen veranlassten uns zur Durchführung einer wissenschaftlichen Untersuchung der Elektrostimulation bei primärem Offenwinkelglaukom (POWG). Die Zielparameter unserer Studie waren die Erfassung von möglichen unerwünschten Ereignissen sowie die Wirksamkeit der transkornealen Elektrostimulation (TES) durch Bestimmung subjektiver und objektiver Parameter der Sehfunktion. Es wurden 14 Patienten in 3 Gruppen randomisiert aufgeteilt und mit 0 % (Scheinstimulation, n = 5), 66 % (n = 5) oder 150 % (n = 4) ihrer individuellen Schwelle für elektrisch ausgelöste Phosphene über 6 Wochen 1‑mal wöchentlich für 30 min stimuliert. Es konnten keine schwerwiegenden unerwünschten Ereignisse festgestellt werden; die Verträglichkeit der TES mittels DTL-Elektroden war insgesamt gut. Die Entwicklung einer papillären Randblutung eines scheinstimulierten Auges wurde als einziges unerwünschtes Ereignis verzeichnet. Zusammenfassend konnte nur ein signifikanter Unterschied der intraindividuellen Veränderungen zur Basisuntersuchung zwischen den Gruppen erfasst werden. Der Augeninnendruck in der 66 % stimulierten Gruppe war signifikant höher als in der Scheinstimulationsgruppe (p = 0,04), jedoch fanden wir keine signifikanten Unterschiede zur 150 %-Gruppe (weder Scheinstimulation vs. 150 % noch 66 % vs. 150 %). Der Unterschied (mittlere Differenz zur Anfangsuntersuchung −2,33 mm Hg für die Scheinstimulationsgruppe und 0,97 mm Hg für die 66 %-Gruppe; REML) war klinisch nicht relevant. Alle anderen Untersuchungen, insbesondere das Gesichtsfeld, erbrachten keine signifikanten Unterschiede. Es konnte gezeigt werden, dass TES mittels DTL-Elektroden bei Patienten mit POWG zu keinen unerwünschten oder schwerwiegenden unerwünschten Ereignissen in den stimulierten Gruppen führte. Die Anwendung der TES für Patienten mit POWG ist momentan jedoch nur unter Studienbedingungen zu empfehlen.

Abstract

Recently, reports have been published on the effectiveness of electrical stimulation in patients and experimental animal models with neurodegenerative ocular diseases. Our study included 14 patients with primary open angle glaucoma (POAG), who were randomized into one of three groups with 0% (sham, n = 5), 66% (n = 5) or 150% (n = 4) of their individual electrical phosphene thresholds. Patients were treated with transcorneal electrical stimulation (TES) for 30 min once a week for 6 consecutive weeks. Outcome measures of our study were the detection of possible adverse events and efficacy of TES using DTL electrodes in subjective and objective parameters of visual function under treatment. TES was tolerated well and no serious adverse events were registered relating to the treatment. One single adverse event was registered as appearance of an optic disc hemorrhage of a sham-stimulated eye. In summary, one significant increase of intra-ocular pressure in the 66% group was observed in comparison to the sham group (p = 0.04), without significant differences compared to the 150% group (both sham vs. 150% group and 66% vs. 150% group). This difference (mean difference compared to baseline of −2.33 mm Hg for the sham group and +0.97 mm Hg for the 66% group; REML) was not clinical meaningful. All other findings, including results of the visual field, were not statistically significant different between groups. It was shown that TES using DTL electrodes did not trigger adverse or serious adverse events in the stimulated groups in patients with POAG. Patients with POAG should currently receive TES only under study conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Belmonte C, Bartels SP, Liu JH et al (1987) Effects of stimulation of the ocular sympathetic nerves on IOP and aqueous humor flow. Invest Ophthalmol Vis Sci 28:1649–1654

    CAS  PubMed  Google Scholar 

  2. Boland MV, Ervin AM, Friedman DS et al (2013) Comparative effectiveness of treatments for open-angle glaucoma: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med 158:271–279

    Article  PubMed  Google Scholar 

  3. Chow AY, Chow VY, Packo KH et al (2004) The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 122:460–469

    Article  PubMed  Google Scholar 

  4. Ciavatta VT, Kim M, Wong P et al (2009) Retinal expression of Fgf2 in RCS rats with subretinal microphotodiode array. Invest Ophthalmol Vis Sci 50:4523–4530

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dawson WW, Trick GL, Litzkow CA (1979) Improved electrode for electroretinography. Invest Ophthalmol Vis Sci 18:988

    CAS  PubMed  Google Scholar 

  6. Dobelle WH, Mladejovsky MG (1974) Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol 243:553–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dor H (1873) Beiträge zur Electrotherapie der Augenkrankheiten. Graefes Arch Clin Exp Ophthalmol 19:352

    Article  Google Scholar 

  8. Fujikado T, Morimoto T, Matsushita K et al (2006) Effect of transcorneal electrical stimulation in patients with nonarteritic ischemic optic neuropathy or traumatic optic neuropathy. Jpn J Ophthalmol 50:266–273

    Article  PubMed  Google Scholar 

  9. Gall C, Schmidt S, Schittkowski MP et al (2016) Alternating current stimulation for vision restoration after optic nerve damage: A randomized clinical trial. PLOS ONE 11:e0156134

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gallar J, Liu JH (1993) Stimulation of the cervical sympathetic nerves increases intraocular pressure. Invest Ophthalmol Vis Sci 34:596–605

    CAS  PubMed  Google Scholar 

  11. Gekeler F, Messias A, Ottinger M et al (2006) Phosphenes electrically evoked with DTL electrodes: a study in patients with retinitis pigmentosa, glaucoma, and homonymous visual field loss and normal subjects. Invest Ophthalmol Vis Sci 47:4966–4974

    Article  PubMed  Google Scholar 

  12. Gloster J, Greaves DP (1957) Effect of diencephalic stimulation upon intra-ocular pressure. Br J Ophthalmol 41:513–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heijl A, Leske MC, Bengtsson B et al (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol 120:1268–1279

    Article  PubMed  Google Scholar 

  14. Henrich-Noack P, Voigt N, Prilloff S et al (2013) Transcorneal electrical stimulation alters morphology and survival of retinal ganglion cells after optic nerve damage. Neurosci Lett 543:1–6

    Article  CAS  PubMed  Google Scholar 

  15. Inomata K, Shinoda K, Ohde H et al (2007) Transcorneal electrical stimulation of retina to treat longstanding retinal artery occlusion. Graefes Arch Clin Exp Ophthalmol 245:1773–1780

    Article  PubMed  Google Scholar 

  16. Kass MA, Heuer DK, Higginbotham EJ et al (2002) The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120:701–713

    Article  PubMed  Google Scholar 

  17. Kumar B, Nesterov AP (1994) The effect of noninvasive electrostimulation of the optic nerve and retina on visual functions in patients with primary open-angle glaucoma. Vestn Oftalmol 110:5–7

    PubMed  Google Scholar 

  18. Kurimoto T, Oono S, Oku H et al (2010) Transcorneal electrical stimulation increases chorioretinal blood flow in normal human subjects. Clin Ophthalmol 4:1441–1446

    Article  PubMed  PubMed Central  Google Scholar 

  19. Miyake K, Yoshida M, Inoue Y et al (2007) Neuroprotective effect of transcorneal electrical stimulation on the acute phase of optic nerve injury. Invest Ophthalmol Vis Sci 48:2356–2361

    Article  PubMed  Google Scholar 

  20. Morimoto T, Fujikado T, Choi JS et al (2007) Transcorneal electrical stimulation promotes the survival of photoreceptors and preserves retinal function in royal college of surgeons rats. Invest Ophthalmol Vis Sci 48:4725–4732

    Article  PubMed  Google Scholar 

  21. Morimoto T, Miyoshi T, Matsuda S et al (2005) Transcorneal electrical stimulation rescues axotomized retinal ganglion cells by activating endogenous retinal IGF-1 system. Invest Ophthalmol Vis Sci 46:2147–2155

    Article  PubMed  Google Scholar 

  22. Naito A, Izumi H, Karita K et al (2001) Effects of a beta-adrenergic blocking agent timolol on intra ocular pressure responses induced by stimulation of cervical sympathetic nerve in the cat. Tohoku J Exp Med 195:219–225

    Article  CAS  PubMed  Google Scholar 

  23. Naycheva L, Schatz A, Rock T et al (2012) Phosphene thresholds elicited by transcorneal electrical stimulation in healthy subjects and patients with retinal diseases. Invest Ophthalmol Vis Sci 53:7440–7448

    Article  PubMed  Google Scholar 

  24. Naycheva L, Schatz A, Willmann G et al (2013) Transcorneal electrical stimulation in patients with retinal artery occlusion: A prospective, randomized, sham-controlled pilot study. Ophthalmol Ther 2:25–39

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nesterov AP, Khadikova EV (1997) Effect of ciliary muscle electrical stimulation on ocular hydrodynamics and visual function in patients with glaucoma. Vestn Oftalmol 113:12–14

    CAS  PubMed  Google Scholar 

  26. Ni YQ, Gan DK, Xu HD et al (2009) Neuroprotective effect of transcorneal electrical stimulation on light-induced photoreceptor degeneration. Exp Neurol 219:439–452

    Article  PubMed  Google Scholar 

  27. Oono S, Kurimoto T, Kashimoto R et al (2011) Transcorneal electrical stimulation improves visual function in eyes with branch retinal artery occlusion. Clin Ophthalmol 5:397–402

    PubMed  PubMed Central  Google Scholar 

  28. Osako T, Chuman H, Maekubo T et al (2013) Effects of steroid administration and transcorneal electrical stimulation on the anatomic and electrophysiologic deterioration of nonarteritic ischemic optic neuropathy in a rodent model. Jpn J Ophthalmol 57:410–415

    Article  CAS  PubMed  Google Scholar 

  29. Ozeki N, Shinoda K, Ohde H et al (2013) Improvement of visual acuity after transcorneal electrical stimulation in case of best vitelliform macular dystrophy. Graefes Arch Clin Exp Ophthalmol 251:1867–1870

    Article  PubMed  Google Scholar 

  30. Pardue MT, Phillips MJ, Hanzlicek B et al (2006) Neuroprotection of photoreceptors in the RCS rat after implantation of a subretinal implant in the superior or inferior retina. Adv Exp Med Biol 572:321–326

    Article  PubMed  Google Scholar 

  31. Pardue MT, Phillips MJ, Yin H et al (2005) Possible sources of neuroprotection following subretinal silicon chip implantation in RCS rats. J Neural Eng 2:S39–47

    Article  PubMed  Google Scholar 

  32. Pardue MT, Phillips MJ, Yin H et al (2005) Neuroprotective effect of subretinal implants in the RCS rat. Invest Ophthalmol Vis Sci 46:674–682

    Article  PubMed  Google Scholar 

  33. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Quigley HA, Flower RW, Addicks EM et al (1980) The mechanism of optic nerve damage in experimental acute intraocular pressure elevation. Invest Ophthalmol Vis Sci 19:505–517

    CAS  PubMed  Google Scholar 

  35. Rock T, Schatz A, Naycheva L et al (2013) Effects of transcorneal electrical stimulation in patients with Stargardt’s disease. Ophthalmologe 110:68–73

    Article  CAS  PubMed  Google Scholar 

  36. Schatz A, Arango-Gonzalez B, Fischer D et al (2012) Transcorneal electrical stimulation shows neuroprotective effects in retinas of light-exposed rats. Invest Ophthalmol Vis Sci 53:5552–5561

    Article  PubMed  Google Scholar 

  37. Schatz A, Rock T, Naycheva L et al (2011) Transcorneal electrical stimulation for patients with retinitis pigmentosa: A prospective, randomized, sham-controlled exploratory study. Invest Ophthalmol Vis Sci 52:4485–4496

    Article  PubMed  Google Scholar 

  38. Schiefer U, Pascual JP, Edmunds B et al (2009) Comparison of the new perimetric GATE strategy with conventional full-threshold and SITA standard strategies. Invest Ophthalmol Vis Sci 50:488–494

    Article  PubMed  Google Scholar 

  39. Schmid H, Herrmann T, Kohler K et al (2009) Neuroprotective effect of transretinal electrical stimulation on neurons in the inner nuclear layer of the degenerated retina. Brain Res Bull 79:15–25

    Article  PubMed  Google Scholar 

  40. Siegner SW, Netland PA (1996) Optic disc hemorrhages and progression of glaucoma. Ophthalmology 103:1014–1024

    Article  CAS  PubMed  Google Scholar 

  41. Sommer A, Tielsch JM, Katz J et al (1991) Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. Arch Ophthalmol 109:1090–1095

    Article  CAS  PubMed  Google Scholar 

  42. Standish M (1887) A case of Retinitis Pigmentosa treated electrically. Trans Am Ophthalmol Soc 4:553–558

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Strohmaier CA, Reitsamer HA, Kiel JW (2013) Episcleral venous pressure and IOP responses to central electrical stimulation in the rat. Invest Ophthalmol Vis Sci 54:6860–6866

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tagami Y, Kurimoto T, Miyoshi T et al (2009) Axonal regeneration induced by repetitive electrical stimulation of crushed optic nerve in adult rats. Jpn J Ophthalmol 53:257–266

    Article  PubMed  Google Scholar 

  45. Willmann G, Schaferhoff K, Fischer MD et al (2011) Gene expression profiling of the retina after transcorneal electrical stimulation in wild-type Brown Norway rats. Invest Ophthalmol Vis Sci 52:7529–7537

    Article  CAS  PubMed  Google Scholar 

  46. Zrenner E, Bartz-Schmidt KU, Benav H et al (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 278:1489–1497

    Article  PubMed  Google Scholar 

Download references

Förderung

Finanzielle Unterstützung zur Durchführung der Studie: Okuvision GmbH, Reutlingen, Deutschland

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Schatz.

Ethics declarations

Interessenkonflikt

T. Röck, L. Naycheva, G. Willmann, B. Wilhelm, T. Peters, E. Zrenner, K.U. Bartz-Schmidt, F. Gekeler und A. Schatz geben an, dass kein Interessenkonflikt besteht.

Alle im vorliegenden Manuskript beschriebenen Untersuchungen am Menschen wurden mit Zustimmung der zuständigen Ethik-Kommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Röck, T., Naycheva, L., Willmann, G. et al. Transkorneale Elektrostimulation bei primärem Offenwinkelglaukom. Ophthalmologe 114, 922–929 (2017). https://doi.org/10.1007/s00347-016-0415-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-016-0415-5

Schlüsselwörter

Keywords

Navigation