Skip to main content
Log in

Inter- und Intraobserverreliabilität der kornealen Oberflächentemperaturmessung mit dem TG-1000 bei Normalaugen

Interobserver and intraobserver reliability of corneal surface temperature measurements with the TG-1000 thermograph in normal eyes

  • Originalien
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Zielsetzung

Ziel ist es, die Reliabilität der Temperaturmessung mit dem Thermographen TG-1000 bei Mehrfachmessung eines Untersuchers (Intraobserver) sowie Einfachmessung durch mehrere Untersucher (Interobserver) anhand eines Patientenkollektivs mit Normalbefunden zu evaluieren und dadurch die Reproduzierbarkeit der Untersuchung zu bewerten.

Patienten und Methoden

Es wurden 50 rechte Augen von 50 Patienten (mittleres Alter 29,1 ± 7,9 Jahre) ohne Vorderabschnittsbefund oder Vorerkrankungen/Voroperationen in diese prospektive monozentrische Fallserie eingeschlossen. Augen mit Sicca-Symptomatik wurden durch den McMonnies-Fragebogen ausgeschlossen. Bei diesen Augen wurde von 3 Untersuchern jeweils eine Messung der kornealen Oberflächentemperatur über ein Intervall von 10 s mit dem Thermographen TG-1000 (Tomey, Erlangen-Tennenlohe, Germany) durchgeführt. Weiter wurden bei einer Subgruppe von 22 Patienten durch einen der Untersucher 2 weitere Messungen durchgeführt. Aus der Temperaturkarte wurde automatisiert die lokale Temperatur zentral sowie mittelperipher (3 mm Abstand zum Zentrum) bei 3, 6, 9 und 12 Uhr extrahiert und ausgewertet.

Ergebnisse

Sowohl für die Mehrfachmessung durch einen Untersucher (Intraobserver) wie auch Einfachmessungen durch mehrere Untersucher (Interobserver) liefert der Thermograph konsistente Ergebnisse an allen erfassten Lokalisationen der Hornhaut. Das Cronbach’s α als Maß für die Reliabilität lieferte sowohl für die Inter- wie auch Intraobserveruntersuchung durchweg Werte von über 0,9. Die Temperatur der kornealen Oberfläche liegt im Mittel im Bereich zwischen 34,0 und 34,7 °C, wobei ein geringes Temperaturgefälle von temporal oben nach nasal unten zu beobachten war.

Schlussfolgerungen

Der Thermograph TG-1000 liefert bei Augen ohne Vorderabschnittsbefund konsistente Resultate zur kornealen Oberflächentemperatur. Durch einen Export der gemessenen Rohdaten mit einer lateralen Auflösung von 320 × 240 Messpunkten und einer zeitlichen Auflösung von 11 Bildern in einem Intervall von 10 s bietet der Thermograph vielfältige Möglichkeiten bei der Analyse des örtlich-zeitlichen Temperaturverhaltens der Hornhaut.

Abstract

Purpose

The aim of this study was to analyze the reliability of temperature measurements with the ocular TG-1000 thermograph in a setup of sequential measurements performed by one observer (intraobserver) and a sequence of measurements performed by different observers (interobserver) in normal subjects without pathologies of the anterior segment of the eye.

Patients and methods

A total of 50 right eyes from 50 individuals (mean age 29.1 ± 7.9 years) without ocular pathologies or history of ocular surgery were enrolled in this prospective monocentric clinical case series. Eyes with signs of dry eye syndrome (based on a positive McMonnies questionnaire) were excluded from the study. Corneal surface temperature measurements were performed by three examiners to assess interobserver reliability. In addition, in a subgroup of 22 individuals, a sequence of 3 measurements were performed by 1 of the examiners to examine intraobserver reliability. Corneal surface temperature was measured within an interval of 10 s (11 frames) on a region of interest of 16 ± 12 mm (320 ± 240 pixels). Central and mid-peripheral local temperatures at 3 mm (3, 6, 9 and 12 o’clock) were extracted and analyzed from the raw data.

Results

The ocular TG-1000 thermograph yielded consistent results for the interobserver as well as intraobserver conditions in measuring corneal surface temperature in the center as well as mid-periphery of the cornea. Cronbach’s alpha was 0.9 or higher at all corneal locations, which proves a high consistency of results for the interobserver and intraobserver measurements. The average corneal surface temperature ranged between 34.0 °C and 34.7 °C with a slight decrease from the upper temporal (9 and 12 o’clock) to the lower nasal (3 and 6 o’clock) quadrants.

Conclusion

The TG-1000 thermograph yielded consistent results of corneal surface temperature in individuals without anterior segment pathologies or history of ocular surgery. With the option of raw data export (11 frames within 10 s with a lateral resolution of 320 × 240 pixels) the thermograph offers a wide range of new diagnostic options for a spatiotemporal analysis of corneal surface temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Aliò J, Padron M (1982) Influence of age on the temperature of the anterior segment of the eye. Measurements by infrared thermometry. Ophthalmic Res 14:153–159

    Article  PubMed  Google Scholar 

  2. Biondi F, Dornbusch PT, Sampaio M et al (2013) Infrared ocular thermography in dogs with and without keratoconjunctivitis sicca. Vet Ophthalmol. doi:10.1111/vop.12086

  3. Efron N, Young G, Brennan NA (1989) Ocular surface temperature. Curr Eye Res 8:901–906

    CAS  PubMed  Google Scholar 

  4. Galassi F, Giambene B, Corvi A, Falaschi G (2007) Evaluation of ocular surface temperature and retrobulbar haemodynamics by infrared thermography and colour Doppler imaging in patients with glaucoma. Br J Ophthalmol 91:878–881

    Article  PubMed Central  PubMed  Google Scholar 

  5. Girardin F, Orgül S, Erb C, Flammer J (1999) Relationship between corneal temperature and finger temperature. Arch Ophthalmol 117:166–169

    Article  CAS  PubMed  Google Scholar 

  6. Gonnermann J, Klein JP, Klamann MKJ et al (2012) Dry eye symptoms in patients after eyelid reconstruction with full-thickness eyelid defects: using the Tomey TG-1000 thermographer. Ophthalmic Res 48:192–198

    Article  PubMed  Google Scholar 

  7. Gonnermann J, Maier AKB, Klein JP et al (2014) Evaluation of ocular surface temperature in patients with pterygium. Curr Eye Res 39:359–364

    Article  PubMed  Google Scholar 

  8. Hara Y, Shiraishi A, Yamaguchi M et al (2014) Evaluation of allergic conjunctivitis by thermography. Ophthalmic Res 51:161–166

    Article  CAS  PubMed  Google Scholar 

  9. Holmberg A (1952) The temperature of the eye during the application of hot packs, and after milk injections. Acta Ophthalmol 30:347–364

    Article  Google Scholar 

  10. Jiang LJ, Ng EY, Yeo AC et al (2005) A perspective on medical infrared imaging. J Med Eng Technol 29:257–267

    Article  CAS  PubMed  Google Scholar 

  11. Jones BF (1998) A reappraisal of the use of infrared thermal image analysis in medicine. IEEE Trans Med Imaging 17(6):1019–1027

    Article  CAS  PubMed  Google Scholar 

  12. Kamao T, Yamaguchi M, Kawasaki S et al (2010) Screening for dry eye with newly developed ocular surface thermographer. Am J Ophthalmol 151:782–791

    Article  Google Scholar 

  13. Klamann MKJ, Klein JP, Maier AK et al (2011) Application possibilities of modern thermography-first experience with the new Tomey TG 1000. Klin Monatsbl Augenheilkd 228:515–519

    Article  CAS  PubMed  Google Scholar 

  14. Klamann MKJ, Maier AKB, Gonnermann J et al (2013) Ocular surface temperature gradient is increased in eyes with bacterial corneal ulcers. Ophthalmic Res 49:52–56

    Article  PubMed  Google Scholar 

  15. Klamann MKJ, Maier AKB, Gonnermann J et al (2012) Measurement of dynamic ocular surface temperature in healthy subjects using a new thermography device. Curr Eye Res 37:678–683

    Article  PubMed  Google Scholar 

  16. Klamann MKJ, Maier AKB, Gonnermann J et al (2013) Thermography: a new option to monitor filtering bleb function? J Glaucoma. doi:10.1097/IJG.0b013e31825af0ca

  17. Mapstone R (1968) Determinants of corneal temperature. Br J Ophthalmol 52:729–741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Mapstone R (1968) Measurement of corneal temperature. Exp Eye Research 7:237–243

    Article  CAS  Google Scholar 

  19. Morgan PB, Smyth JV, Tullo AB, Efron N (1999) Ocular temperature in carotid artery stenosis. Optom Vis Sci 76:850–854

    Article  CAS  PubMed  Google Scholar 

  20. Morgan PB, Soh MP, Efron N, Tullo AB (1993) Potential applications of ocular thermography. Optom Vis Sci 70:568–576

    Article  CAS  PubMed  Google Scholar 

  21. Morgan PB, Tullo AB, Efron N (1995) Infrared thermography of the tear film in dry eye. Eye (Lond) 9:615–618

  22. Morgan PB (1996) Ocular surface cooling in dry eye: a pilot study. J Br Cont Lens Assoc 19:7–10

    Article  Google Scholar 

  23. Morgan PB (1994) Ocular thermography in health and disease (PhD.thesis). University of Manchester, Manchester, 1994

  24. Mori A, Oguchi Y, Okusawa Y et al (1997) Use of high-speed, high-resolution thermography to evaluate the tear film layer. Am J Ophthalmol 124:729–735

    Article  CAS  PubMed  Google Scholar 

  25. Moussa S, Eppig T, Pattmöller J et al (2013) Diurnal and zonal analysis of corneal surface temperature in young healthy adults. Eur J Ophthalmol 23:641–645

    Article  PubMed  Google Scholar 

  26. Purslow C, Wolffsohn J (2007) The relation between physical properties of the anterior eye and ocular surface temperature. Optometry Vis Sci 84:197–201

    Article  Google Scholar 

  27. Purslow C, Wolffsohn JS, Santodomingo-Rubido J (2005) The effect of contact lens wear on dynamic ocular surface temperature. Cont Lens Anterior Eye 28:29–36

    Article  PubMed  Google Scholar 

  28. Raflo GT, Chart P, Hurwitz JJ (1982) Thermographic evaluation of the human lacrimal drainage system. Ophthalmic Surg 13:119–124

    CAS  PubMed  Google Scholar 

  29. Rosenstock T, Chart P, Hurwitz JJ (1983) Inflammation of the lacrimal drainage system-assessment by thermography. Ophthalmic Surg 14:229–237

    CAS  PubMed  Google Scholar 

  30. Rysa SJ (1974) Corneal temperature in man and rabbit. Observations made using an infrared camera and cold chamber. Acta Ophthalmologica (Copenh.) 52:810–816

  31. Siewert C, Dänicke S, Kersten S et al (2014) Difference method for analysing infrared images in pigs with elevated body temperatures. Z Med Phys 24:6–15

    Article  PubMed  Google Scholar 

  32. Tan JH, Ng EY, Acharya UR (2010) Evaluation of tear evaporation from ocular surface by functional infrared thermography. Med Phys 37:6022–6034

    Article  PubMed  Google Scholar 

  33. Vannetti F, Matteoli S, Finocchio L et al (2014) Relationship between ocular surface temperature and peripheral vasoconstriction in healthy subjects: a thermographic study. Proc Inst Mech Eng H 228:297–302

    Article  PubMed  Google Scholar 

  34. Zaproudina N, Varmavuo V, Airaksinen O, Närhi M (2008) Reproducibility of infrared thermography measurements in healthy individuals. Physiol Meas 29:515–524

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. M. Pattmöller, J. Wang, J. Pattmöller, E. Zemova, T. Eppig, B. Seitz, N. Szentmáry und A. Langenbucher geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pattmöller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pattmöller, M., Wang, J., Pattmöller, J. et al. Inter- und Intraobserverreliabilität der kornealen Oberflächentemperaturmessung mit dem TG-1000 bei Normalaugen. Ophthalmologe 112, 746–751 (2015). https://doi.org/10.1007/s00347-014-3210-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-014-3210-1

Schlüsselwörter

Keywords

Navigation