Skip to main content
Log in

An AP2/ERF Family Transcription Factor PnERF1 Raised the Biosynthesis of Saponins in Panax notoginseng

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Transcription factors (TFs) are important regulative factors that mediate many life processes. The ERF family of TFs harbors a conserved AP2 domain, which plays vital roles in secondary metabolism in plants. However, few ERF genes in Panax notoginseng have been reported to date. In this study, a P. notoginseng ERF gene was cloned and designated as PnERF1. The cDNA of PnERF1 is 1113 bp long and encodes a protein consisting of 266 amino acids. Electrophoretic mobility shift assay (EMSA) demonstrated that the protein could bind to cis-element GCC-box, indicating that PnERF1 might bind to the promoter regions which contained GCC-box. The expression levels of some genes involved in triterpenoid saponin biosynthesis in PnERF1-transgenic cells were relatively higher than those in the wild cells. Correspondingly, the contents of total saponins were raised in the PnERF1-transgenic cell lines compared to the wild cell lines. Additionally, the contents of six major monomer saponins (Rg3, Rh1, Rd, Rg1, F1 and Re) were also increased in the transgenic cells. Such results suggest that the transcription factor PnERF1 is a positive regulator related to triterpenoid saponin biosynthesis in P. notoginseng.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Carey MF, Peterson CL, Smale ST (2013) Electrophoretic mobility-shift assays. Cold Spring Harb Protoc 2013:636–639

    PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Dai YL (2008) Molecular cloning and characterization of AP2-type transcription factors involved in isoprenoid biosynthetic pathway of Taxus cuspidata, Ph. D. Theses, Fudan University, Shanghai, China

  • Dai YL, Qin QL, Dai DL, Kong LS, Li W, Zha XJ, Jin YJ, Tang KX (2009) Isolation and characterization of a novel cDNA encoding methyl jasmonate-responsive transcription factor TcAP2 from Taxus cuspidata. Biotechnol Lett 31:1801–1809

    Article  CAS  PubMed  Google Scholar 

  • Dong TT, Cui XM, Song ZH, Zhao KJ, Ji ZN, Lo CK, Tsim KW (2003) Chemical assessment of roots of Panax notoginseng in China: regional and seasonal variations in its active constituents. J Agric Food Chem 51:4617–4623

    Article  CAS  PubMed  Google Scholar 

  • Guo HB, Cui XM, An N, Cai GP (2010) Sanchi ginseng (Panax notoginseng (Burkill) F. H. Chen) in China: distribution, cultivation and variations. Genet Resour Crop Evol 57:453–460

    Article  Google Scholar 

  • Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu FX, Zhong JJ (2008) Jasmonic acid mediates gene transcription of ginsenoside biosynthesis in cell cultures of Panax notoginseng treated with chemically synthesized 2-hydroxyethyl jasmonate. Process Biochem 43:113–118

    Article  CAS  Google Scholar 

  • Kim DH (2012) Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J Ginseng Res 36:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JJ, Kwon HK, Jung IH, Cho YB, Kim KJ, Kim JL (2009) Anti-cancer activities of ginseng extract fermented with Phellinus linteus. Mycobiology 37:21–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung KW, Wong AS (2010) Pharmacology of ginsenosides: a literature review. Chin Med 5:20–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Li FM, Zhao HQ, Cai YF (2011) High Performance Liquid Chromatography. In: Li FM (ed) Analytical chemistry, 17th Edn. People’s Medical Publishing House, Beijing, pp 396–397

    Google Scholar 

  • Liu MH, Yang BR, Cheung WF, Yang KY, Zhou HF, Kwok JSL, Liu GC, Li XF, Zhong SL, Lee SMY, Tsui SKW (2015) Transcriptome analysis of leaves, roots and flowers of Panax notoginseng identifies genes involved in ginsenoside and alkaloid biosynthesis. BMC Genomics 16:1–12

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Wang YY, Zhang FY, Lin XY, Tang KX (2010) Advances in studies on transcriptional regulatory factor in secondary metabolites regulation of Chinese materia medica. Chin Tradit Herbal Drugs 41:159–162

    CAS  Google Scholar 

  • Luo ZY, Zhou G, Chen XH, Lu QH, Hu WX (2001) Isolation of high-quality genomic DNA from plants. Bull Hunan Med Univ 26: 178–180

    CAS  Google Scholar 

  • Luo HM, Sun C, Sun YZ, Wu Q, Li Y, Song JY, Niu YY, Cheng XL, Xu HX, Li CY, Liu JY, Steinmetz A, Chen SL (2011) Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers. BMC Genomics 12(Suppl 5):S5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma DM, Pu GB, Lei CY, Ma LQ, Wang HH, Guo YW, Chen JL, Du ZG, Wang H, Li GF, Ye HC, Liu BY (2009) Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant Cell Physiol 50:2146–2161

    Article  CAS  PubMed  Google Scholar 

  • Menke FLH, Champion A, Kijne JW, Memelink J (1999) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. Embo J 18:4455–4463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Ng TB (2006) Pharmacological activity of sanchi ginseng (Panax notoginseng). J Pharm Pharmacol 58:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Parastoo M, Vahid N, Hassan E, Majid H, Sattar TE (2016) Exogenous methyl jasmonate treatment induces defense response against Fusarium culmorum in wheat seedlings. J Plant Growth Regul. doi:10.1007/s00344-016-9620-3

    Google Scholar 

  • Peebles CAM, Hughes EH, Shanks JW, San KY (2009) Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metab Eng 11: 76–86

    Article  CAS  PubMed  Google Scholar 

  • Puissant C, Houdebine LM (1990) An improvement of the single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Biotechniques 8:148–149

    CAS  PubMed  Google Scholar 

  • Qin F, Liu J, Chen YY, Zhang XH (2008) Study on the transonic extraction and content determination methods of total saponins of Panax Notoginseng (PNS). J Anhui Agric Sci 36:3062–3063

    CAS  Google Scholar 

  • Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol 49:865–879

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Ge F, Liu DQ, Rao J (2013) Effects of CAS silencing by RNAi on the content of saponins in Panax notoginseng. China Biotechnol 33:80–85

    CAS  Google Scholar 

  • Sun JT, Zhou R, Li YP, Hu W, Qiu D, Wang XT, Wang Q, Feng ZJ, Wang LZ, Zhou Y, He GY, Yang GX (2016) A Brachypodium distachyon MAPKK gene BdMKK6.2 negatively regulates drought stress tolerance in transgenic tobacco plants. J Plant Growth Regul 35:121–134

    Article  CAS  Google Scholar 

  • Uzayisenga R, Ayeka PA, Wang Y (2014) Anti-diabetic potential of Panax notoginseng saponins (PNS): a review. Phytother Res 28:510–516

    Article  PubMed  Google Scholar 

  • van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    Article  PubMed  Google Scholar 

  • Wang XM, Wang SX, Hu L (2014) Neuroprotective effect of Panax notoginseng saponins and its main components. World J Neurosci 4:12–17

    Article  Google Scholar 

  • Yang XC, Xiong XJ, Wang HR, Wang J (2014) Protective effects of Panax notoginseng saponins on cardiovascular diseases: a comprehensive overview of experimental studies. Evid-Based Complet Altern Med 2014:204840

    Google Scholar 

  • Yang Y, Liu DQ, Ge F, Chen CY (2015a) Effect of over-expressing farnesyl pyrophosphate synthase (FPS) gene of Panax notoginseng cell on saponin synthesis. Modern Food Sci Technol 31:59–64

    Google Scholar 

  • Yang Y, Liu DQ, Ge F, Yu G (2015b) Effects of co-overexpression of squalene synthase and dammarenediol- II synthase in Panax notoginseng cells on saponin synthesis. Modern Food Sci Technol 31:7–13

    CAS  Google Scholar 

  • Yu ZX, Li JX, Yang CQ, Hu WL, Wang LJ, Chen XY (2012) The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol plant 5:353–365

    Article  CAS  PubMed  Google Scholar 

  • Zhang HT, Hedhili S, Montiel G, Zhang YX, Chatel G, Pre M, Gantet P, Memelink J (2011) The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. Plant J 67:61–71

    Article  CAS  PubMed  Google Scholar 

  • Zhou ML, Zhu XM, Shao JR, Shao JR, Wu YM, Tang YX (2010) Transcriptional response of the catharanthine biosynthesis pathway to methyl jasmonate/nitric oxide elicitation in Catharanthus roseus hairy root culture. Appl Microbiol Biotechnol 88:737–750

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Li S, Zhao RQ, Wu YS (2006) Cloning and sequencing of Panax notoginseng GAPDH. Acta Bot Boreal-Occident Sin 26:1316–1319

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31260070; 31060044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Ge.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, B., Huang, Z., Ge, F. et al. An AP2/ERF Family Transcription Factor PnERF1 Raised the Biosynthesis of Saponins in Panax notoginseng . J Plant Growth Regul 36, 691–701 (2017). https://doi.org/10.1007/s00344-017-9672-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9672-z

Keywords

Navigation