Skip to main content
Log in

A new algorithm for sea-surface wind-speed retrieval based on the L-band radiometer onboard Aquarius

  • Remote sensing
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Aquarius is the second satellite mission to focus on the remote sensing of sea-surface salinity from space and it has mapped global sea-surface salinity for nearly 3 years since its launch in 2011. However, benefiting from the high atmospheric transparency and moderate sensitivity to wind speed of the L-band brightness temperature (TB), the Aquarius L-band radiometer can actually provide a new technique for the remote sensing of wind speed. In this article, the sea-surface wind speeds derived from TBs measured by Aquarius’ L-band radiometer are presented, the algorithm for which is developed and validated using multisource wind speed data, including WindSat microwave radiometer and National Data Buoy Center buoy data, and the Hurricane Research Division of the Atlantic Oceanographic and Meteorological Laboratory wind field product. The error analysis indicates that the performance of retrieval algorithm is good. The RMSE of the Aquarius wind-speed algorithm is about 1 and 1.5 m/s for global oceans and areas of tropical hurricanes, respectively. Consequently, the applicability of using the Aquarius L-band radiometer as a near all-weather wind-speed measuring method is verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amarin R A, Jones W L, El-Nimri S F et al. 2012. Hurricane wind speed measurements in rainy conditions using the airborne hurricane imaging radiometer (HIRAD). IEEE Trans. GeoSci. Remote Sens., 50 (1): 180–192.

    Article  Google Scholar 

  • Blume H J C, Kendall B M, Fedors J C. 1978. Measurement of ocean temperature and salinity via microwave radiometry. Boundary-Layer Meteorology, 13 (1): 295–308.

    Article  Google Scholar 

  • Boutin J, Martin N, Reverdin G et al. 2013. Sea surface freshening inferred from SMOS and ARGO salinity: impact of rain. Ocean Sci., 9 (1): 183–192.

    Article  Google Scholar 

  • Boutin J, Martin N, Yin X et al. 2012. First assessment of SMOS data over open ocean: Part II—sea surface salinity. IEEE Trans. GeoSci. Remote Sens., 50 (5): 1662–1675.

    Article  Google Scholar 

  • Droppleman J D, Mennelin R A. 1970. An airborne measurement of salinity variations of the Mississippi river overflow. J. Geophys. Res., 78 (30): 5909–5013.

    Article  Google Scholar 

  • Gabarro C, Font J, Camps A et al. 2004. A new empirical model of sea surface microwave emissivity for salinity remote sensing. Geophysical Research Letters, 31 (1): 1–5.

    Article  Google Scholar 

  • Guimbard S, Gourrion J, Portabella M et al. 2012. SMOS semi-empirical ocean forward model adjustment. IEEE Trans. GeoSci. Remote Sens., 50 (5): 1676–1687.

    Article  Google Scholar 

  • Hwang P A. 2012. Foam and roughness effects on passive microwave remote sensing of the ocean. IEEE Trans. GeoSci. Remote Sens., 50 (8): 2978–2985.

    Article  Google Scholar 

  • Johnson J T. 2006. An efficient two-scale model for the computation of thermal emission and atmospheric reflection from the sea surface. IEEE Trans. GeoSci. Remote Sens., 44 (3): 560–568.

    Article  Google Scholar 

  • Klein L, Swift C T. 1977. An improved model for the dielectric constant of sea water at microwave. IEEE Transactions On Frequencies, Antennas and Propagation, 25 (1): 104–111.

    Article  Google Scholar 

  • Le Vine D M, Lagerloef G S E, Colomb F R et al. 2007. Aquarius: an instrument to monitor sea surface salinity from space. IEEE Trans. GeoSci. Remote Sens., 45 (7): 2040–2050.

    Article  Google Scholar 

  • Le Vine D M, Lagerloef G S E, Torrusio S E. 2010. Aquarius and remote sensing of sea surface salinity from space. Proceedings of the IEEE, 98 (5): 688–703.

    Article  Google Scholar 

  • Lerner R M, Hollinger J P. 1977. Analysis of 1.4 GHz radiometric measurements from Skylab. Remote Sensing of Environment, 6 (4): 251–269.

    Article  Google Scholar 

  • Mecklenburg S, Drusch M, Kerr Y H et al. 2012. ESA’s soil moisture and ocean salinity mission: mission performance and operations. IEEE Trans. GeoSci. Remote Sens., 50 (5): 1354–1366.

    Article  Google Scholar 

  • Meissner T, Ricciardulli L, Wentz F J. (2011. All-weather wind vector measurements from intercalibrated active and passive microwave satellite sensors. IEEE IGRSS, 1509–1511.

    Google Scholar 

  • Meissner T, Wentz F J. (2009. Wind-vector retrievals under rain with passive satellite microwave radiometers. IEEE Trans. GeoSci. Remote Sens., 47 (9): 3065–3083.

    Article  Google Scholar 

  • Powell M D, Murillo S, Dodge P et al. 2010. Reconstruction of hurricane Katrina’s wind fields for storm surge and wave hind casting. Ocean Engineering, 37 (1): 26–36.

    Article  Google Scholar 

  • Qi Z, Wei E. 2012. Analysis of cost functions for retrieving sea surface salinity. Journal of Ocean University of China, 11 (2): 147–152.

    Article  Google Scholar 

  • Reul N, Tenerelli J, Boutin J et al. 2012a. Overview of the first SMOS sea surface salinity products. Part I: quality assessment for the second half 2010. IEEE Trans. GeoSci. Remote Sens., 50 (5): 1636–1647.

    Article  Google Scholar 

  • Reul N, Tenerelli J, Chapron B et al. 2012b. SMOS satellite L-band radiometer: A new capability for ocean surface remote sensing in hurricanes. J. Geophys. Res., 117 (C2): 1–24.

    Google Scholar 

  • Tang W, Yueh S H, Fore A et al. 2013. The rain effect on Aquarius’ L-band sea surface brightness temperature and radar backscatter. Remote Sensing of Environment, 137 (10): 147–157.

    Article  Google Scholar 

  • Wentz F, Le Vine D, Meissner T et al. 2012. Aquarius salinity retrieval algorithm, Algorithm Theoretical Basis Document, Version 2, Addendum I (2012), Addendum II (2013), Addendum III (2014), RSS Technical Report 082912, Remote Sensing Systems, Santa Rosa, California, http://podaac.jpl.nasa.gov/SeaSurfaceSalinity/Aquarius, Accessed on 2014–04-28.

    Google Scholar 

  • Yin X, Boutin J, Spurgeon P. 2012. First assessment of SMOS data over open ocean: Part I—Pacific Ocean. IEEE Trans. GeoSci. Remote Sens., 50 (5): 1648–1661.

    Article  Google Scholar 

  • Yueh S, Dinardo S J, Fore A et al. 2010. Passive and active L-band microwave observations and modeling of ocean surface winds. IEEE Trans. GeoSci. Remote Sens., 48 (8): 3087–3100.

    Article  Google Scholar 

  • Yueh S, Fore A, Freedman A et al. 2012. Aquarius Scatterometer Algorithm Theoretical Basis Document, Version 1, Jet Propulsion Laboratory, http://podaac.jpl.nasa.gov/SeaSurfaceSalinity/Aquarius, Accessed on 2014–04-28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang  (王晶).

Additional information

Supported by the National High Technology Research and Development Program of China (863 Program) (No. 2013AA09A505) and the National Natural Science Foundation for Young Scientists of China (No. 41306183)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, J., Fan, C. et al. A new algorithm for sea-surface wind-speed retrieval based on the L-band radiometer onboard Aquarius. Chin. J. Ocean. Limnol. 33, 1115–1123 (2015). https://doi.org/10.1007/s00343-015-4123-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4123-9

Keyword

Navigation