Skip to main content
Log in

Removal of K+, Na+, Ca2+, and Mg2+ from saline-alkaline water using the microalga Scenedesmus obliquus

  • Coastal biotechnology: Reshaping biosphere along coastal line
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The capability of Scenedesmus obliquus to remove cations (K+, Na+, Ca2+, Mg2+) from saline-alkaline water was investigated at different salinities (0, 5, 10, 15, 20, 25) and carbonate alkalinities (0, 5, 10, 15, 20, 25, 30, 35 mmol/L). K+, Na+, Ca2+, and Mg2+ in saline-alkaline water were efficiently removed by S. obliquus. The maximum removal of the cations (29.37 mg for K+, 185.85 mg for Na+, 23.07 mg for Ca2+, 66.14 mg for Mg2+) occurred at salinity 25. The maximum removal of K+ (2.28 mg), Na+ (6.62 mg), Ca2+ (1.01 mg), and Mg2+ (0.62 mg) occurred at carbonate alkalinities of 25 mmol/L for K+, 35 mmol/L for Na+, 20 mmol/L for Ca2+, and 25 mmol/L for Mg2+, respectively. Under a salinity stress, the concentration of Na+ in S. obliquus increased significantly, while that of K+ decreased significantly. The concentrations of Ca2+ and Mg2+ decreased as well. The ratios of K+/Na+, Ca2+/Na+, and Mg2+/Na+ were significantly lower in all salinity treatments than those of the control. Under alkaline stress, the concentrations of Na+ and K+ in S. obliquus decreased significantly and the ratios of K+/Na+, Ca2+/Na+, and Mg2+/Na+ were significantly higher in all treatments than in the control. Moreover, the concentrations of Ca2+ and Mg2+ in S. obliquus at alkalinities of 5–10 mmol/L were significantly higher than those of the other treatments. The removal of Na+ by S. obliquus mainly occurs through biosorption, and Mg2+ and Ca2+ were removed through both biosorption and bioaccumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksu Z, Dönmez G. 2006. Binary biosorption of cadmium(II) and nickel(II) onto dried Chlorella vulgaris: Co-ion effect on mono-component isotherm parameters. Process Biochem, 41(4): 860–868.

    Article  Google Scholar 

  • Ashraf M. 2004. Some important physiological selection criteria for salt tolerance in plants. Flora — Morphology, Distribution, Functional Ecology of Plants, 199(5): 361–376.

    Article  Google Scholar 

  • Atkinson M R, Findlay G P, Hope A B et al. 1967. Salt regulation in the mangroves Rhizophora mucronata Lam. and Aegialitis annulata Rbr. Australian Journal of Biological Sciences, 20(3): 589–600.

    Google Scholar 

  • Boon I P, Allaway G W. 1986. Rates of ionic specificity of salt secretion from excised leaves of the mangrove, Avicennia marina (Forsk) Vierh. Aquat. Bot., 26: 143–153.

    Article  Google Scholar 

  • Cristina M, Paula C, Malcata F. 2009. Use of the microalga Scenedesmus to remove cadmium cations from aqueous solutions. World Journal of Microbiology and Biotechnology, 25(9): 1 573–1 578.

    Google Scholar 

  • Da Costa A C A, de Franca F P. 1998. The behaviour of the microalgae Tetraselmis chuii in cadmium-contaminated solutions. Aquacult. Int., 6(1): 57–66.

    Article  Google Scholar 

  • Demetriou G, Neonaki C, Navakoudis E et al. 2007. Salt stress impact on the molecular structure and function of the photosynthetic apparatus—the protective role of polyamines. Biochimica et Biophysica Acta, 1767(4): 272–280.

    Article  Google Scholar 

  • Doshi H, Ray A, Kothari I L. 2007. Bioremediation potential of live and dead Spirulina: spectroscopic, kinetics and SEM studies. Biotechnol. Bioeng., 96(6): 1 051–1 063.

    Article  Google Scholar 

  • Fraile A, Penche S, González F et al. 2005. Biosorption of copper, zinc, cadmium and nickel by Chlorella vulgaris. Chemistry and Ecology, 21(1): 61–75.

    Article  Google Scholar 

  • Gupta V K, Rastogi A. 2008a. Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies. J. Hazard Mater., 152(1): 407–414.

    Article  Google Scholar 

  • Gupta V K, Rastogi A. 2008b. Biosorption of lead (II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—a comparative study. Colloids Surf B Biointerfaces, 64(2): 170–178.

    Article  Google Scholar 

  • Gupta V K, Rastogi A. 2008c. Sorption and desorption studies of chromium (VI) from nonviable cyanobacterium Nostoc muscorum biomass. J. Hazard Mater., 154(1–3): 347–354.

    Article  Google Scholar 

  • Gupta V K, Rastogi A. 2008d. Equilibrium and kinetic modelling of cadmium (II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J. Hazard Mater., 153(1–2): 759–766.

    Article  Google Scholar 

  • Gupta V K, Rastogi A. 2009. Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J. Hazard Mater., 163(1): 396–402.

    Article  Google Scholar 

  • Gupta V K, Rastogi A, Nayak A. 2010. Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models. J. Colloid Interface Sci., 342(2): 533–539.

    Article  Google Scholar 

  • Gupta V K, Rastogi A, Saini V K et al. 2006. Biosorption of copper (II) from aqueous solutions by Spirogyra species. J. Colloid Interface Sci., 296(1): 59–63.

    Article  Google Scholar 

  • Huang C, Gu X, Hu W. 2000. Culturing of Scenedesmus obliquus in saline-alkali waters and its biological purification. Journal of Lake Science, 12(1): 63–67. (in Chinese with English abstract)

    Google Scholar 

  • Huang L H, Liang Z W. 2008. Ionic absorption characteristics of Leymus chinensis seeded in various pH soils. Chinese Journal of Grassland, (1): 35–39. (in Chinese with English abstract)

    Google Scholar 

  • Leborans G F, Novillo A. 1996. Toxicity and bioaccumulation of cadmium in Olisthodiscus luteus (Raphidophyceae). Water Res, 30(1): 57–62.

    Article  Google Scholar 

  • Lewis M A. 1995. Use of freshwater plants for phytotoxicity testing: a review. Environ. Pollut, 87(3): 319–336.

    Article  Google Scholar 

  • Li Y, Liu X H, Zhuang W M. 2000. Advances in magnesium nutritional physiology in plants. Journal of Fujian Agricultural University (Natural Science), (1): 74–80. (in Chinese with English abstract)

    Google Scholar 

  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7(9): 405–410.

    Article  Google Scholar 

  • Moghaieb E A R, Saneoka H, Fujita K. 2004. Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritima. Plant Science, 166: 1 345–1 349.

    Article  Google Scholar 

  • Mohammed A, Shafea A. 1992. Growth and some metabolic activities Scenedesmus obliquus cultivated under different NaCl concentrations. Biol. Plantarum, 34(5): 423–430.

    Article  Google Scholar 

  • Omar H. 2002. Adsorption of zinc ions by Scenedesmus obliquus and S-quadricauda and its effect on growth and metabolism. Biol. Plantarum, 45(2): 261–266.

    Article  Google Scholar 

  • Rangsayator N, Upatham E S, Kruatrachue M et al. 2002. Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium. Environ. Pollut., 119(1): 45–53.

    Article  Google Scholar 

  • Rollemberg M C, Goncalves M L, Correia D S M et al. 1999. Thermodynamics of uptake of cadmium by Chlorella marina. Bioelectrochem. Bioenerg., 48(1): 61–68.

    Article  Google Scholar 

  • Rozema J, Gude H, Pollak G. 1981. An ecophysiological study of the salt secretion of four halophytes. New Phytol., 89(2): 201–217.

    Article  Google Scholar 

  • Sagi M, Dovrat A, Kipnis T et al. 1997. Ionic balance, biomass production, and organic nitrogen as affected by salinity and nitrogen source in annual ryegrass. J. Plant Nutr., 20(10): 1 291–1 316.

    Article  Google Scholar 

  • Scholander F P, Hammel T H, Hemmingsen E. 1962. Salt balance in mangroves. Plant Physiol., 37: 722–729.

    Article  Google Scholar 

  • Shi C, Wang L. 2005. Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag. Plant Soil, 271: 15–26.

    Article  Google Scholar 

  • Sobrado M A, Greaves E D. 2000. Leaf secretion composition of the mangrove species Avicennia germinans (L.) in relation to salinity: a case study by using total-reflection X-ray fluorescence analysis. Plant Sci., 159(1): 1–5.

    Article  Google Scholar 

  • Solisio C, Lodi A, Soletto D et al. 2008. Cadmium biosorption on Spirulina platensis biomass. Bioresour. Technol., 99(13): 5 933–5 937.

    Article  Google Scholar 

  • Sumner M E M E, Naida R. 1998. Sodic Soils: Distribution, Properties, Management, and Environmental Consequences. In: Malcolm E Sumner, Ravendra Naidu eds. Oxford University Press, New York.

  • Tang Y, Gin K Y H, Aziz M A. 2002. Equilibrium model for cadmium adsorption by green algae in a batch reactor. J. Environ. Eng. (New York), 128(4): 304–312.

    Article  Google Scholar 

  • Terry P A, Stone W. 2002. Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere, 47(3): 249–255.

    Article  Google Scholar 

  • Tuzun I, Bayramoglu G, Yalcin E et al. 2005. Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii. J. Environ. Manage, 77(2): 85–92.

    Article  Google Scholar 

  • Vasudevan P, Padmavathy V, Dhingra S C. 2002. Biosorption of monovalent and divalent ions on baker’s yeast. Bioresource Technol., 82(3): 285–289.

    Article  Google Scholar 

  • Waisel Y, Eshel A, Agami M. 1986. Salt balance of leaves of the mangrove Avicennia marina. Physiol Plantarum, 67(1): 67–72.

    Article  Google Scholar 

  • Wang H, Lai Q, Fang W et al. 2003. Study on Aquaculture in Different Type of Saline-Alkali Water. Ocean Press, Beijng. p.116–120. (in Chinese with English abstract)

    Google Scholar 

  • Xue H, Stumm W, Sigg L. 1988. The binding of heavy metals to algal surfaces. Water Res., 22(7): 917–926.

    Article  Google Scholar 

  • Yokoi S, Bressan R A, Hasegawa P M. 2002. Salt stress tolerance of plants. Plant Cell, 1: 25–33.

    Google Scholar 

  • Zhi Y, Jin X, Zhong Y et al. 2008. Photosynthetic bicarbonate utilization by the freshwater green microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. Acta Scientiae Circumstantiae, 28(8): 1 519–1 525. (in Chinese with English abstract)

    Google Scholar 

  • Zhu J K. 2003. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol., 6(5): 441–445.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qifang Lai  (来琦芳).

Additional information

Supported by the Special Research Fund for the National Non-Profit Institutes (East China Sea Fisheries Research Institute) (Nos. 2009M03, 2007Z03) and the National Special Research Fund for Non-Profit Sector (Agriculture) (No. 200903001-0502)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Z., Ying, C., Lu, J. et al. Removal of K+, Na+, Ca2+, and Mg2+ from saline-alkaline water using the microalga Scenedesmus obliquus . Chin. J. Ocean. Limnol. 31, 1248–1256 (2013). https://doi.org/10.1007/s00343-013-2116-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-013-2116-0

Keyword

Navigation