Skip to main content
Log in

Cloning of the cDNA encoding adenosine 5′-monophosphate deaminase 1 and its mRNA expression in Japanese flounder Paralichthys olivaceus

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

AMP deaminase catalyzes the conversion of AMP into IMP and ammonia. In the present study, a full-length cDNA of AMPD1 from skeletal muscle of Japanese flounder Paralichthys olivaceus was cloned and characterized. The 2 526 bp cDNA contains a 5′-UTR of 78 bp, a 3′-UTR of 237 bp and an open reading frame (ORF) of 2 211 bp, which encodes a protein of 736 amino acids. The predicted protein contains a highly conserved AMP deaminase motif (SLSTDDP) and an ATP-binding site sequence (EPLMEEYAIAAQVFK). Phylogenetic analysis showed that the AMPD1 and AMPD3 genes originate from the same branch, but are evolutionarily distant from the AMPD2 gene. RT-PCR showed that the flounder AMPD1 gene was expressed only in skeletal muscle. QRT-PCR analysis revealed a statistically significant 2.54 fold higher level of AMPD1 mRNA in adult muscle (750±40 g) compared with juvenile muscle (7.5±2 g) (P<0.05). HPLC analysis showed that the IMP content in adult muscle (3.35±0.21 mg/g) was also statistically significantly higher than in juvenile muscle (1.08±0.04 mg/g) (P<0.05). There is a direct relationship between the AMPD1 gene expression level and IMP content in the skeletal muscle of juvenile and adult flounders. These results may provide useful information for quality improvement and molecular breeding of aquatic animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chai L J, Chu M X, Wen J et al. 2005. Study on polymorphism of AMPD1 gene and its association with inosine monophosphate content in Beijing fatty chickens. Acta Veterinaria et Zootechnica Sinica, 36: 1 117–1 120. (in Chinese with English abstract)

    Google Scholar 

  • Gross M, Morisaki H, Morisaki T et al. 1994. Identification of functional domains in AMPD1 by mutational analysis. Biochem. Biophys. Res. Commun., 205: 1 010–1 017.

    Article  Google Scholar 

  • Kaletha K, Thebault M T, Raffin J P. 1991. Comparative studies on heart and skeletal muscle AMP-deaminase from rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol., 99B: 751–754.

    Google Scholar 

  • Kuninaka A. 1960. Studies on taste of ribonucleic acid derivatives. Agric. Chem. Soc. Jpn., 34: 487–492.

    Google Scholar 

  • Lahbib-Mansais Y, Mellink C, Yerle M et al. 1994. A new marker (NGFB) on pig chromosome 4, isolated by using a consensus sequence conserved among species. Cytogenet Cell Genet., 67: 120–125.

    Article  Google Scholar 

  • Li J S, Chen M L. 1998. Determination of inosinic acid in muscles by RP-HPLC. Journal of Zhejiang Agriculture University, 24: 295–296. (in Chinese with English abstract)

    Google Scholar 

  • Loh E, Rebbeck T R, Mahoney P D. 1999. Common variant in AMPD1 gene predicts improved clinical outcome in patients with heart failure. Circulation, 11: 1 422–1 425.

    Google Scholar 

  • Mahnke-Zizelman D K, Sabina R L. 1992. Cloning of human AMP deaminase isoform E cDNAs. Evidence for a third AMPD gene exhibiting alternatively spliced 50-exons. J. Biol. Chem., 267: 20 866–20 877.

    Google Scholar 

  • Manoba T, Hasegawa K. 1991. Sensory changes in umami taste of inosine 5’-monophosphate solution after heating. Journal of Food Science, 56: 1 429–1 432.

    Google Scholar 

  • Mardanyan S, Sharoyan S, Antonyan A et al. 2001. Tryptophan environment in adenosine deaminase: I. Enzyme modification with N-bromosuccinimide in the presence of adenosine and EHNA analogues. Biochimica et Biophysica Acta, 1 546: 185–195.

    Article  Google Scholar 

  • Morisaki T, Gross M, Morisaki H et al. 1992. Molecular basis of AMP deaminase deficiency in skeletal muscle. PNAS, 89: 6 457–6 461.

    Article  Google Scholar 

  • Morisaki T, Sabina R L, Holmes E W. 1990. Adenylate deaminase. A multi gene family in humans and rats. J. Biol. Chem., 265:11 482–11 486.

    Google Scholar 

  • Ogasawara N, Goto H, Yamada Y et al. 1978. Distribution of AMP deaminase isozymes in rat tissues. Eur. J. Biochem., 87: 297–304.

    Article  Google Scholar 

  • Ogasawara N, Goto H, Yamada Y et al. 1982. AMP deaminase isozymes in human tissues. Biochim. Biophys. Acta, 714: 298–306.

    Article  Google Scholar 

  • Purzycka J. 1962. AMP and adenosine aminohydrolases in rat tissues. Acta Biochim. Pol., 9: 83–93.

    Google Scholar 

  • Rico-Sanz J, Rankinen T, Joanisse D R. 2003. Associations between cardiorespiratory responses to exercise and the C34T AMPD1 gene polymorphism in the HERITAGE family study. Physiol. Genomics, 14: 161–166.

    Google Scholar 

  • Rubio J C, Martin M A, Del-Hoyo P et al. 2000. Molecular analysis of Spanish patients with AMP deaminase deficiency. Muscle & Nerve, 23: 1 175–1 178.

    Google Scholar 

  • Sabina R L, Mahnke-Zizelman D K. 2000. Towards an understanding of the functional significance of N-terminal domain divergence in human AMP deaminase isoforms. Pharm. Ther., 87: 279–283.

    Article  Google Scholar 

  • Sabina R L, Morisaki T, Clarke P et al. 1990. Characterization of the human and ratmyoadenylate deaminase genes. J. Biol. Chem., 265: 9 423–9 433.

    Google Scholar 

  • Sabina R L, Ogasawara N, Holmes E W. 1989. Expression of three stage-specific transcripts of AMP deaminase during myogenesis. Mol. Cell. Biol., 9: 2 244–2 246.

    Google Scholar 

  • Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenic trees. Mol. Biol. Evol., 4: 406–425.

    Google Scholar 

  • Seiko M, Minoru S, Yoshihiro S et al. 2011. Molecular characterization of adenosine 5′-monophosphate deaminase-the key enzyme responsible for the umani taste of Nori (Porphyra yezoensisi Ueda, Rhodophyta). Mar. Biotechnol., 13: 1 140–1 147.

    Google Scholar 

  • Stankiewicz A, Spychala J, Makarewicz W. 1980. Comparative studies on muscle AMP deaminase-III. Substrate specificity of the enzyme from man, rabbit, rat, hen, frog and pikeperch. Comp. Biochem. Physiol., 66B: 529–533.

    Google Scholar 

  • Strail A, Knoll A, Moser G et al. 2000. The porcine adenosine monophosphate deaminase 1(AMPD1) gene maps to chromosome 4. Anim Genet., 31: 147–148.

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M et al. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Bio. Evol., 24: 1 596–1 599.

    Article  Google Scholar 

  • Thebault M T, Izem L, Leroy J P et al. 2005. AMP-deaminase in elasmobranch fish: a comparative histochemical and enzymatic study. Comp. Biochem. Physiol., 141B: 472–479.

    Google Scholar 

  • Thebault M T, Tanguy A, Meistertzheim A L et al. 2010. Partial characterization of the gene encoding myoadenylate deaminase from the teleost fish Platichthys flesus. Fish Physiol. Biochem., 36: 819–825.

    Article  Google Scholar 

  • Wang L J, Mo X Y, Xu Y J et al. 2008. Molecular characterization and expression patterns of AMP deaminase1(AMPD1) in porcine skeletal muscle. Comp. Biochem. Physiol., 151B: 159–166.

    Google Scholar 

  • Wessels J A, Kooloos W M, DeJonge R. 2006. Relationship between genetic variants in the adenosine pathway and outcome of methotrexate treatment in patients with recent-onset rheumatoid arthritis. Arthritis Rheum., 54: 2 830–2 839.

    Google Scholar 

  • Yamaguchi S. 1967. The synergistic taste effect of monosodium glutamate and disodium 5′-inosinate. Food Sci., 32: 473–478.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang  (王雷).

Additional information

Supported by the National Natural Science Foundation of China (No. 41206144) and the National High Technology Research and Development Program of China (863 Program) (No. 2008AA100805)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, K., Sun, S., Liu, M. et al. Cloning of the cDNA encoding adenosine 5′-monophosphate deaminase 1 and its mRNA expression in Japanese flounder Paralichthys olivaceus . Chin. J. Ocean. Limnol. 31, 118–127 (2013). https://doi.org/10.1007/s00343-013-2055-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-013-2055-9

Keyword

Navigation