Skip to main content
Log in

CdS quantum dots: growth, microstructural, optical and electrical characteristics

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Cadmium sulfide (CdS) quantum dots (QDs) with cubic phase were prepared using simple precursors by chemical precipitation technique, and their thin films were grown on glass substrates by chemical bath deposition. The obtained quantum dots were characterized for their structural, morphological, optical, thermal and electrical properties using X-ray diffraction (XRD), field emission transmission electron microscopy, UV–visible absorption spectroscopy, Raman spectroscopy, photoluminescence, thermogravimetric analysis/differential thermal analysis and low-temperature electrical transport measurements, respectively. XRD pattern reveals that the prepared CdS QDs are highly pure and crystalline in nature with cubic phase. The average particle size, estimated to be ~2 nm, is almost in agreement with the values calculated by Brusïs formula. Selected area electron diffraction also recognizes the cubic structure of CdS quantum dots. The UV–visible spectra exhibit a blueshift with respect to that of bulk sample which is attributed to the quantum size effect of electrons and holes. The band gap of CdS QDs is calculated from absorption data using Tauc plot and found to be 2.84 eV. Energy-dispersive X-ray analysis reveals the presence of Cd and S in almost stoichiometric ratio in the prepared CdS QDs. Micro-Raman spectroscopic studies also yield convincing evidence for the transformation of structure. The emission spectra of CdS QDs show peak centered at 541 nm, which is attributed to the presence of cadmium vacancies in the lattice. The DC resistivity data at low temperatures are qualitatively consistent with the variable-range hopping model, and the density of states at the Fermi level is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Behren, T. Buren, M. Zacharias, E.H. Chimowitz, P.M. Fauchet, Solid State Commun. 105, 317 (1998)

    Article  ADS  Google Scholar 

  2. Z.L. Wang, Y. Liu, Z. Zhang, Handbook of Nanophase and Nanostuctured Materials: Materials Synthesis and Applications (I) (Tsinghua University Press and Kluwer/Plenum, New York, 2002)

    Google Scholar 

  3. A. Cortes, H. Gomez, R.E. Marotti, G. Riveros, E.A. Dalchiele, Sol. Energy Mater. Sol. Cells 82, 21 (2004)

    Article  Google Scholar 

  4. S.V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  5. D.R. Larson, W.R. Zipfel, R.M. Williams, S.W. Clark, M.P. Bruchez, F.W. Wise, W.W. Webb, Science 300, 1434 (2003)

    Article  ADS  Google Scholar 

  6. V. Sukhovatkin, S. Hinds, L. Brzozowski, E.H. Sargent, Science 324, 1542 (2009)

    Article  ADS  Google Scholar 

  7. P.Q. Zhao, X.L. Wu, J.Y. Fan, P.K. Chu, G.G. Siu, Scr. Mater. 55, 1123 (2006)

    Article  Google Scholar 

  8. R. Maity, K.K. Chattopadhyay, J. Nanopart. Res. 8, 125 (2006)

    Article  Google Scholar 

  9. Y.C. Zhang, G.Y. Wang, X.Y. Hu, J. Alloys Compd. 437, 47 (2007)

    Article  Google Scholar 

  10. S. Wang, B.R. Jarrett, S.M. Kauzlarich, A.Y. Louie, J. Am. Chem. Soc. 129, 3848 (2007)

    Article  Google Scholar 

  11. K.M. Boer, J. Appl. Phys. 107, 023701 (2010)

    Article  ADS  Google Scholar 

  12. Z.F. Liu, Y.J. Li, Z.G. Zhao, Y. Cui, K. Hara, M. Miyauchi, J. Mater. Chem. 20, 492 (2010)

    Article  Google Scholar 

  13. J.W. Stouwdam, R.A.J. Janssen, Adv. Mater. 21, 2916 (2009)

    Article  Google Scholar 

  14. R.M. Ma, X.L. Wei, L. Dai, H.B. Huo, G.G. Qin, Nanotechnology 18, 1 (2007)

    Google Scholar 

  15. N. Pradhan, D.M. Battaglia, Y. Liu, X. Peng, Nano Lett. 7, 312 (2007)

    Article  ADS  Google Scholar 

  16. B. Ghosh, M. Das, P. Banerjee, S. Das, Sol. Energy Mater. Sol. Cells 92, 1099 (2008)

    Article  Google Scholar 

  17. R. Banerjee, R. Jayakrishnan, P. Ayyub, J. Phys. Condens. Matter 12, 10647 (2000)

    Article  ADS  Google Scholar 

  18. D. Kulik, H. Htoon, C.K. Shih, Y. Li, J. Appl. Phys. 95, 1056 (2004)

    Article  ADS  Google Scholar 

  19. J.C. Barrelet, Y. Wu, D.C. Bell, C.M. Lieber, J. Am. Chem. Soc. 125, 11498 (2003)

    Article  Google Scholar 

  20. A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, K. Chen, J. Phys. Chem. B 109, 24268 (2005)

    Article  Google Scholar 

  21. P. Zhang, L. Gao, Langmuir 19, 208 (2003)

    Article  Google Scholar 

  22. K.R. Murali, S. Kumaresan, J. Joseph Prince, J. Mater. Sci. Mater. Electron. 18, 487 (2007)

    Article  Google Scholar 

  23. J. Chu, Z. Jin, W. Wang, H. Liu, D. Wang, J. Yang, Z. Hon, J Alloys Compd 517, 54 (2012)

    Article  Google Scholar 

  24. E.S.F. Neto, N.O. Dantas, S.W. da Silva, P.C. Morais, M.A. Pereira-da-Silva, A.J.D. Moreno, V. López-Richard, G.E. Marques, C. Trallero-Giner, Nanotechnology 23, 125701 (2012)

    Article  ADS  Google Scholar 

  25. Tansir Ahamad, Saad M. Alshehri, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 108, 26 (2013)

    Article  ADS  Google Scholar 

  26. S.D. Chavhan, S.V. Bagul, R.R. Ahire, N.G. Deshpande, A.A. Sagade, Y.G. Gudage, R. Sharma, J. Alloys Compds. 436, 400 (2007)

    Article  Google Scholar 

  27. W. Wang, I. Germanenko, M Samy El-Shall. Chem. Mater. 14, 3028 (2002)

    Article  Google Scholar 

  28. J. Nanda, S. Sapra, D.D. Sharma, Chem. Mater. 12, 1018 (2000)

    Article  Google Scholar 

  29. S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang, S.J. Chua, J. Appl. Phys. 98, 013505 (2005)

    Article  ADS  Google Scholar 

  30. G.K. Williamson, H. Hall, Acta Metall. 1, 22 (1953)

    Article  Google Scholar 

  31. M.A. Majeed Khan, S. Kumar, M. Ahamed, S.A. Alrokayan, M.S. Alsalhi, M. Alhoshan, A.S. Aldwayyan, Appl. Surf. Sci. 257, 10607 (2011)

    Article  ADS  Google Scholar 

  32. K. Sooklal, L.H. Hanus, H.J. Ploehn, C.J. Murphy, Adv. Mater. 10, 1083 (1998)

    Article  Google Scholar 

  33. P. Calandra, M. Goffredi, V.T. Liveri, Colloid Surf. A 160, 9 (1999)

    Article  Google Scholar 

  34. J. Tauc, in Amorphous and Liquid Semiconductors, ed. by J. Tauc (Plenum Press, New York, 1974)

    Chapter  Google Scholar 

  35. M.A. Majeed Khan, S. Kumar, M. Alhoshan, A.S. Al Dwayyan, Opt. Laser Technol. 49, 196 (2013)

    Article  ADS  Google Scholar 

  36. E. Brus, J. Chem. Phys. 80, 4430 (1984)

    Article  Google Scholar 

  37. A.C. Rastogi, S.N. Sharma, S. Kohli, Semicond. Sci. Technol. 15, 1011 (2000)

    Article  ADS  Google Scholar 

  38. R.A. May, L. Kondrachova, B.P. Hahn, K.J. Setvenson, J. Phys. Chem. C 111, 18251 (2007)

    Article  Google Scholar 

  39. L.E. Brus, Appl. Phys. A 53, 465 (1991)

    Article  ADS  Google Scholar 

  40. M.A. Majeed Khan, W. Khan, M. Ahamed, M. Alhoshan, Mater. Lett. 79, 119 (2012)

    Article  Google Scholar 

  41. A. Gichuhi, B.E. Boone, C. Shannon, J. Electroanal. Chem. 522, 21 (2002)

    Article  Google Scholar 

  42. P. Anlian, L. Ruibin, Y. Qing, Z. Yongchun, Y. Guozhen, Z. Bingsuo, C. Keqiu, J Phys Chem. B 109, 24268 (2005)

    Article  Google Scholar 

  43. T. Thongtem, A. Phuruangrate, S. Thongtem, J. Phys. Chem. Solids 69, 1346 (2009)

    Article  ADS  Google Scholar 

  44. P. Nandakumar, C. Vijayan, Y.V.G.S. Murti, J. Appl. Phys. 91, 1509 (2002)

    Article  ADS  Google Scholar 

  45. V. Singh, P. Chauhan, J. Phys. Chem. Solids 70, 1074 (2009)

    Article  ADS  Google Scholar 

  46. J.R.L. Fernandez, M. de Souza-Parise, P.C. Morais, Surf. Sci. 601, 3805 (2007)

    Article  ADS  Google Scholar 

  47. Z.Q. Wang, J.F. Gong, J.H. Duan, H.B. Huang, S.G. Yang, X.N. Zhao, R. Zhang, Y.W. Du, Appl. Phys. Lett. 89, 33102 (2006)

    Article  ADS  Google Scholar 

  48. S.F. Wuister, A.J. Meijerink, J. Lumin. 105, 35 (2003)

    Article  Google Scholar 

  49. R. Sathyamoorthy, S. Chandramohan, P. Sudhagar, D. Kanjilal, D. Kabiraj, K. Asokan, Sol Energy Mater. Sol Cells 90, 2297 (2006)

    Article  Google Scholar 

  50. A.L. Sharma, V. Saxena, S. Annopoorni, B.D. Malhotra, J. Appl. Polym. Sci. 81, 1460 (2001)

    Article  Google Scholar 

  51. C.S. Tu, C.L. Tsai, J.S. Chen, V.H. Schmidt, Phys. Rev. B 65, 104113 (2002)

    Article  ADS  Google Scholar 

  52. Y. Long, Z. Chen, W. Wang, F. Bai, A. Jin, C. Gu, Appl. Phys. Lett. 86, 153102 (2006)

    Article  ADS  Google Scholar 

  53. N.F. Mott, J. Non-Cryst. Solids 1, 1 (1968)

    Article  ADS  Google Scholar 

  54. M.A. Majeed Khan, W. Khan, M. Ahamed, M.S. Alsalhi, T. Ahmed, Electron. Mater. Lett. 9, 53 (2013)

    Article  ADS  Google Scholar 

  55. C. Godet, J. Non-Cryst. Solids 299, 333 (2002)

    Article  ADS  Google Scholar 

  56. K.L. Chopra, S.K. Bahl, Phys. Rev. B 1, 2545 (1970)

    Article  ADS  Google Scholar 

  57. R. Seoudi, A.A. Shabaka, M. Kamal, E.M. Abdelrazek, W. Eisa, Phys. E 45, 47 (2012)

    Article  Google Scholar 

  58. K. Dutta, S. De, S.K. De, J. Appl. Phys. 101, 093711 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project No. RGP-290.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Majeed Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahamad, T., Majeed Khan, M.A., Kumar, S. et al. CdS quantum dots: growth, microstructural, optical and electrical characteristics. Appl. Phys. B 122, 179 (2016). https://doi.org/10.1007/s00340-016-6455-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6455-3

Keywords

Navigation