Skip to main content
Log in

On the interferometric coherent structures in femtosecond supercontinuum generation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report structured interferometric features in femtosecond supercontinuum generation (FSG) with incident laser powers that are near threshold for FSG. We argue that near threshold, these structures arise from the coherent superposition of pulses that are split initially into two daughter pulses during FSG process. Increase in the input pulse energy generates multiple daughter fragments in the temporal domain to an extent that correlated interference structures are not measurable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.R. Alfano, S.L. Shapiro, Emission in the region 4000–7000 Å via four-photon coupling in glass. Phys. Rev. Lett. 24, 584–587 (1970)

    Article  ADS  Google Scholar 

  2. R.R. Alfano, The Supercontinuum Laser Source (Springer, New York, 2006)

    Book  Google Scholar 

  3. P.B. Corkum, C. Rolland, Supercontinuum generation in gases. Phys. Rev. Lett. 57, 2268–2271 (1986)

    Article  ADS  Google Scholar 

  4. V. Kartazaev, R.R. Alfano, Supercontinuum generated in calcite with chirped femtosecond pulses. Opt. Express 32, 3293 (2007)

    Google Scholar 

  5. W. Lee Smith, P. Liu, N. Bloembergen, Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG: Nd laser. Phys. Rev. A 15, 2396 (1977)

    Article  ADS  Google Scholar 

  6. M.A. Foster, A.L. Gaeta, Ultra-low threshold supercontinuum generation in sub-wavelength waveguides. Opt. Express 12, 3137–3143 (2004)

    Article  ADS  Google Scholar 

  7. A.M. Zheltikov, Let there be white light: supercontinuum generation by ultrashort laser pulses. Phys.-Usp. 49, 605–628 (2006)

    Article  ADS  Google Scholar 

  8. S.A. Kovalenko, A.L. Dobryakov, J. Ruthmann, N.P. Ernsting, Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing. Phys. Rev. A 59, 2369–2384 (1999)

    Article  ADS  Google Scholar 

  9. E.T.J. Nibbering, O. Dühr, G. Korn, Generation of intense tunable 20-fs pulses near 400 nm by use of a gas-filled hollow waveguide. Opt. Lett. 22, 1335–1337 (1997)

    Article  ADS  Google Scholar 

  10. P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, Remote sensing of the atmosphere using ultrashort laser pulses. Appl. Phys. B 71, 573–580 (2000)

    Article  ADS  Google Scholar 

  11. V.V. Yakovlev, B. Kohler, K.R. Wilson, Broadly tunable 30-fs pulses produced by optical parametric amplification. Opt. Lett. 19, 2000–2002 (1994)

    Article  ADS  Google Scholar 

  12. J. L. Hall, T. W. Hänsch, The development of laser-based precision spectroscopy, including the optical frequency comb technique, http://www.nobelprize.org/nobel_prizes/physics/laureates/2005/

  13. S.T. Cundiff, J. Ye, Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325 (2002)

    Article  ADS  Google Scholar 

  14. A.L. Gaeta, Catastrophic collapse of ultrashort pulses. Phys. Rev. Lett. 84, 3582–3585 (2000)

    Article  ADS  Google Scholar 

  15. G. Yang, Y.R. Shen, Spectral broadening of ultrashort pulses in a nonlinear medium. Opt. Lett. 9, 510–512 (1984)

    Article  ADS  Google Scholar 

  16. R.R. Alfano, P.P. Ho, Self-, cross-, and induced-phase modulations of ultrashort laser pulse propagation. Quant. Electron. 24, 351–364 (1988)

    Article  ADS  Google Scholar 

  17. A. Couairona, A. Mysyrowicz, Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007)

    Article  ADS  Google Scholar 

  18. K.D. Moll, A.L. Gaeta, Role of dispersion in multiple-collapse dynamics. Opt. Lett. 29, 995–997 (2004)

    Article  ADS  Google Scholar 

  19. J.K. Ranka, R.W. Schirmer, A.L. Gaeta, Observation of pulse splitting in nonlinear dispersive media. Phys. Rev. Lett. 77, 3783 (1996)

    Article  ADS  Google Scholar 

  20. M. Kolesik, E.M. Wright, J.V. Moloney, Dynamic nonlinear X waves for femtosecond pulse propagation in water. Phys. Rev. Lett. 92, 253901 (2004)

    Article  ADS  Google Scholar 

  21. J.K. Ranka, A.L. Gaeta, Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses. Opt. Express 23, 534 (1998)

    Google Scholar 

  22. K. Cook, A.K. Kar, R.A. Lamb, White-light supercontinuum interference of self-focused filaments in water. Appl. Phys. Lett. 83, 3861 (2003)

    Article  ADS  Google Scholar 

  23. A.K. Dharmadhikari, J.A. Dharmadhikari, D. Mathur, Visualization of focusing–refocusing cycles during filamentation in BaF2. Appl. Phys. B 94, 259 (2009)

    Article  ADS  Google Scholar 

  24. W. Watanab, K. Itoh, Spatial coherence of supercontinuum emitted from multiple filaments. Jpn. J. Appl. Phys. 40, 592 (2001)

    Article  ADS  Google Scholar 

  25. A.S. Sandhu, S. Banerjee, D. Goswami, Suppression of supercontinuum generation with circularly polarized light. Opt. Commun. 181(1), 101–107 (2000)

    Article  ADS  Google Scholar 

  26. A. Srivastava, D. Goswami, Control of supercontinuum generation with polarization of incident laser pulses. Appl. Phys. B 77(2–3), 325–328 (2003)

    Article  ADS  Google Scholar 

  27. S. Dinda, D. Goswami, On the generation and control of femtosecond supercontinuum. Sci. Lett. 4, 137 (2015)

    Google Scholar 

  28. A. Brodeur, S.L. Chin, Band-gap dependence of the ultrafast white-light continuum. Phys. Rev. Lett. 80, 4406–4409 (1998)

    Article  ADS  Google Scholar 

  29. K. Cook, A.K. Kar, R.A. Lamb, White-light filaments induced by diffraction effects. Opt. Express 13, 2025 (2005)

    Article  ADS  Google Scholar 

  30. J.H. Marburger, Self-focusing: theory. Prog. Quant. Electron. 4, 35 (1975)

    Article  ADS  Google Scholar 

  31. V.P. Kandidov, O.G. Kosareva, I.S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C.M. Bowden, S.L. Chin, Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation). Appl. Phys. B 77, 149–165 (2003)

    Article  ADS  Google Scholar 

  32. W. Liua, S. Petita, A. Beckera, N. Aközbekb, C.M. Bowdenb, S.L. Chin, Intensity clamping of a femtosecond laser pulse in condensed matter. Opt. Commun. 202, 189–197 (2002)

    Article  ADS  Google Scholar 

  33. C. Corsi, A. Tortora, M. Bellini, Mutual coherence of supercontinuum pulses collinearly generated in bulk media. Appl. Phys. B 77, 285 (2003)

    Article  ADS  Google Scholar 

  34. A. Tortora, C. Corsi, M. Bellini, Comb-like supercontinuum generation in bulk media. Appl. Phys. Lett. 85, 1113 (2004)

    Article  ADS  Google Scholar 

  35. M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  36. P. Devi, V.V. Lozovoy, M. Dantus, Measurement of group velocity dispersion of solvents using 2-cycle femtosecond pulses: experiment and theory. AIP Adv. 1, 032166 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial supports from the Department of Science and Technology (DST), Ministry of Human Resource and Development (MHRD), Indian Space Research Organization (ISRO), and University Grants Commission (UGC), India. Additionally, we thank Ms. S. Goswami for language corrections in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Goswami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinda, S., Bandyopadhyay, S.N. & Goswami, D. On the interferometric coherent structures in femtosecond supercontinuum generation. Appl. Phys. B 122, 148 (2016). https://doi.org/10.1007/s00340-016-6432-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6432-x

Keywords

Navigation