Skip to main content

Advertisement

Log in

Time reversal versus adaptive optimization for spatiotemporal nanolocalization in a random nanoantenna

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Spatiotemporal nanolocalization of ultrashort pulses in a random scattering nanostructure via time reversal and adaptive optimization employing a genetic algorithm and a suitably defined fitness function is studied for two embedded nanoparticles that are separated by only a tenth of the free space wavelength. The nanostructure is composed of resonant core–shell nanoparticles (TiO2 core and Ag shell) placed randomly surrounding these two nanoparticles acting as targets. The time reversal scheme achieves selective nanolocalization only by chance if the incident radiation can couple efficiently to dipolar local modes interacting with the target/emitter particle. Even embedding the structure in a reverberation chamber fails improving the nanolocalization. In contrast, the adaptive optimization strategy reliably yields nanolocalization of the radiation and allows a highly selective excitation of either target position. This demonstrates that random scattering structures are interesting multi-purpose optical nanoantennas to realize highly flexible spatiotemporal optical near-field control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Biagioni, J.-S. Huang, B. Hecht, Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 75(2), 024402 (2012)

    Article  ADS  Google Scholar 

  2. J.S. Huang, T. Feichtner, P. Biagioni, B. Hecht, Impedance matching and emission properties of nanoantennas in an optical nanocircuit. Nano Lett. 9(5), 1897–1902 (2009)

    Article  ADS  Google Scholar 

  3. T.H. Taminiau, F.D. Stefani, F.B. Segerink, N.F. van Hulst, Optical antennas direct single-molecule emission. Nat. Photon. 2(4), 234–237 (2008)

    Article  Google Scholar 

  4. M. Richter, F. Schlosser, M. Schoth, S. Burger, F. Schmidt, A. Knorr, S. Mukamel, Reconstruction of the wave functions of coupled nanoscopic emitters using a coherent optical technique. Phys. Rev. B 86(8), 085308 (2012)

    Article  ADS  Google Scholar 

  5. M.I. Stockman, S.V. Faleev, D.J. Bergman, Coherent control of femtosecond energy localization in nanosystems. Phys. Rev. Lett. 88(6), 067402 (2002)

    Article  ADS  Google Scholar 

  6. T. Brixner, F.J. García de Abajo, J. Schneider, W. Pfeiffer, Nanoscopic ultrafast space-time-resolved spectroscopy. Phys. Rev. Lett. 95(9), 093901 (2005)

    Article  ADS  Google Scholar 

  7. T. Brixner, F.J. García de Abajo, J. Schneider, C. Spindler, W. Pfeiffer, Ultrafast adaptive optical near-field control. Phys. Rev. B 73(12), 125437 (2006)

    Article  ADS  Google Scholar 

  8. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F.J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, Adaptive subwavelength control of nano-optical fields. Nature 446, 301–304 (2007)

    Article  ADS  Google Scholar 

  9. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, S. Cunovic, F. Dimler, A. Fischer, W. Pfeiffer, M. Rohmer, C. Schneider, F. Steeb, C. Strüber, D.V. Voronine, Spatiotemporal control of nanooptical excitations. Proc. Natl. Acad. Sci. USA 107(12), 5329–5333 (2010)

    Article  ADS  Google Scholar 

  10. R.J. Potton, Reciprocity in optics. Rep. Prog. Phys. 67(5), 717–754 (2004)

    Article  ADS  Google Scholar 

  11. A. Derode, P. Roux, M. Fink, Robust acoustic time reversal with high-order multiple scattering. Phys. Rev. Lett. 75(23), 4206 (1995)

    Article  ADS  Google Scholar 

  12. M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.L. Thomas, F. Wu, Time-reversed acoustics. Rep. Prog. Phys. 63(12), 1933–1995 (2000)

    Article  ADS  Google Scholar 

  13. G.F. Edelmann, T. Akal, W.S. Hodgkiss, S. Kim, W. Kuperman, H.C. Song et al., An initial demonstration of underwater acoustic communication using time reversal. IEEE J. Ocean. Eng. 27(3), 602–609 (2002)

    Article  Google Scholar 

  14. M. Fink, Time-reversed acoustics. Sci. Am. 281(5), 91–97 (1999)

    Article  ADS  Google Scholar 

  15. G. Lerosey, J. de Rosny, A. Tourin, A. Derode, G. Montaldo, M. Fink, Time reversal of electromagnetic waves. Phys. Rev. Lett. 92(19), 193904 (2004)

    Article  ADS  Google Scholar 

  16. G. Lerosey, J. de Rosny, A. Tourin, A. Derode, M. Fink, Time reversal of wideband microwaves. Appl. Phys. Lett. 88(15), 154101 (2006)

    Article  ADS  Google Scholar 

  17. G. Lerosey, J. de Rosny, A. Torin, M. Fink, Focusing beyond the diffraction limit with far-field time reversal. Science 315(5815), 1120–1122 (2007)

    Article  ADS  Google Scholar 

  18. R. Carminati, J.J. Saenz, J.-J. Greffet, M. Nieto-Vesperinas, Reciprocity, unitarity, and time-reversal symmetry of the S matrix of fields containing evanescent components. Phys. Rev. A 62(1), 012712 (2000)

    Article  ADS  Google Scholar 

  19. R. Carminati, R. Pierrat, J. de Rosny, M. Fink, Theory of the time reversal cavity for electromagnetic fields. Opt. Lett. 32(21), 3107–3109 (2007)

    Article  ADS  Google Scholar 

  20. M. Durach, A. Rusina, M.I. Stockman, K.A. Nelson, Toward full spatiotemporal control on the nanoscale. Nano Lett. 7(10), 3145–3149 (2007)

    Article  ADS  Google Scholar 

  21. X. Li, M.I. Stockman, Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal. Phys. Rev. B 77(19), 195109 (2008)

    Article  ADS  Google Scholar 

  22. F.J. García de Abajo, Multiple scattering of radiation in clusters of dielectrics. Phys. Rev. B 60(8), 6086–6102 (1999)

    Article  ADS  Google Scholar 

  23. U.K. Chettiar, N. Engheta, Internal homogenization: effective permittivity of a coated sphere. Opt. Express 20(21), 22976 (2012)

    Article  ADS  Google Scholar 

  24. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972)

    Article  ADS  Google Scholar 

  25. M. Lanoy, R. Pierrat, F. Lemoult, M. Fink, V. Leroy, A. Tourin, Subwavelength focusing in bubbly media using broadband time reversal. Phys. Rev. B 91(22), 224202 (2015)

    Article  ADS  Google Scholar 

  26. T. Brixner, Poincaré representation of polarization-shaped femtosecond laser pulses. Appl Phys B 76(5), 531–540 (2003)

    Article  ADS  Google Scholar 

  27. W. Pfeiffer, M. Aeschlimann, T. Brixner, Coherent control of nano-optical excitations, in Optical Antennas, ed. by M. Agio, A. Alú (Cambridge University Press, Cambridge, 2013), pp. 145–167

  28. M.I. Stockman, Ultrafast nanoplasmonics under coherent control. New J. Phys. 10, 025031 (2008)

    Article  ADS  Google Scholar 

  29. M. Sukharev, T. Seideman, Coherent control of light propagation via nanoparticle arrays. J. Phys. B: At. Mol. Opt. Phys. 40(11), S283–S298 (2007)

    Article  ADS  Google Scholar 

  30. P. Tuchscherer, D.V. Voronine, C. Rewitz, F.J. García de Abajo, W. Pfeiffer, T. Brixner, Analytic control of plasmon propagation in nanostructures. Opt. Express 17(16), 14235–14259 (2009)

    Article  ADS  Google Scholar 

  31. D.S. Wiersma, Disordered photonics. Nat. Photon. 7(3), 188–196 (2013)

    Article  ADS  Google Scholar 

  32. M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, D.V. Voronine, Coherent two-dimensional nanoscopy. Science 333(6050), 1723–1726 (2011)

    Article  ADS  Google Scholar 

  33. M. Aeschlimann, T. Brixner, S. Cunovic, A. Fischer, P. Melchior, W. Pfeiffer, M. Rohmer, C. Schneider, C. Strüber, P. Tuchscherer, D.V. Voronine, Nanooptical control of hot-spot field superenhancement on a corrugated silver surface. IEEE J. Sel. Top. Quantum Electron. 18(1), 275–282 (2012)

    Article  Google Scholar 

  34. M. Aeschlimann, T. Brixner, D. Differt, U. Heinzmann, M. Hensen, C. Kramer, F. Lükermann, P. Melchior, W. Pfeiffer, M. Piecuch, C. Schneider, H. Stiebig, C. Strüber, P. Thielen, Perfect absorption in nanotextured thin films via Anderson-localized photon modes. Nat. Photon. 9(10), 663–668 (2015)

    Article  ADS  Google Scholar 

  35. T. Feichtner, O. Selig, M. Kiunke, B. Hecht, Evolutionary optimization of optical antennas. Phys. Rev. Lett. 109(12), 127701 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Science Foundation (DFG) within the SPP 1391. We thank Javier García de Abajo for helpful discussions and for making the MESME code available for the shown field calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Differt.

Additional information

This article is part of the topical collection “Ultrafast Nanooptics” guest edited by Martin Aeschlimann and Walter Pfeiffer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Differt, D., Hensen, M. & Pfeiffer, W. Time reversal versus adaptive optimization for spatiotemporal nanolocalization in a random nanoantenna. Appl. Phys. B 122, 141 (2016). https://doi.org/10.1007/s00340-016-6403-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6403-2

Keywords

Navigation