Skip to main content
Log in

Temperature imaging in low-pressure flames using diode laser two-line atomic fluorescence employing a novel indium seeding technique

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The use of diode lasers for spatially resolved temperature imaging is demonstrated in low-pressure premixed methane–air flames using two-line atomic fluorescence of seeded indium atoms. This work features the advantages of using compact diode lasers as the excitation sources with the benefits of two-dimensional planar imaging, which is normally only performed with high-power pulsed lasers. A versatile and reliable seeding technique with minimal impact on flame properties is used to introduce indium atoms into the combustion environment for a wide range of flame equivalence ratios. A spatial resolution of around 210 µm for this calibration-free thermometry technique is achieved for three equivalence ratios at a pressure of 50 mbar in a laminar flat flame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Li, L. Wei, Z. Tian, B. Yang, J. Wang, T. Zhang et al., Combust. Flame 152, 336 (2008)

    Article  Google Scholar 

  2. A. Frassoldati, R. Grana, T. Faravelli, E. Ranzi, P. Oßwald, K. Kohse-Höinghaus, Combust. Flame 159, 2295 (2012)

    Article  Google Scholar 

  3. Z. Wang, L. Zhao, Y. Wang, H. Bian, L. Zhang, F. Zhang et al., Combust. Flame 162, 2873 (2015)

    Article  Google Scholar 

  4. U. Struckmeier, P. Oßwald, T. Kaspert, L. Bohling, M. Heusing, M. Kohler et al., Zeitschrift fur Physikalische Chemie 223, 503 (2009)

    Article  Google Scholar 

  5. R. Dibble, R. Hollenbach, Symp. Combust. 18, 1489 (1981)

    Article  Google Scholar 

  6. A.T. Hartlieb, B. Atakan, K. Kohse-Höinghaus, Appl. Phys. B 70, 435 (2000)

    Article  ADS  Google Scholar 

  7. H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, C. Schulz, Appl. Phys. B 88, 373 (2007)

    Article  ADS  Google Scholar 

  8. A. Bohlin, C.J. Kliewer, J. Phys. Chem. Lett. 5, 1243 (2014)

    Article  Google Scholar 

  9. A. Bohlin, M. Mann, B.D. Patterson, A. Dreizler, C.J. Kliewer, Development of two-beam femtosecond/picosecond one-dimensional rotational coherent anti-Stokes Raman spectroscopy: time-resolved probing of flame wall interactions. Proc. Combust. Inst. 35(3), 3723–3730 (2015). doi:10.1016/j.proci.2014.05.124

    Article  Google Scholar 

  10. A. Lawitzki, I. Plath, W. Stricker, J. Bittner, U. Meier, K. Kohse-Höinghaus, Appl. Phys. B 50, 513 (1990)

    Article  ADS  Google Scholar 

  11. S. Li, A. Farooq, R.K. Hanson, Meas. Sci. Technol. 22, 125301 (2011)

    Article  ADS  Google Scholar 

  12. R.S.M. Chrystie, E.F. Nasir, A. Farooq, Proc. Combust. Inst. 35, 3757 (2015)

    Article  Google Scholar 

  13. I.S. Burns, X. Mercier, M. Wartel, R.S.M. Chrystie, J. Hult, C.F. Kaminski, Proc. Combust. Inst. 33, 799 (2011)

    Article  Google Scholar 

  14. R.S.M. Chrystie, I.S. Burns, J. Hult, C.F. Kaminski, Opt. Lett. 34, 2492 (2009)

    Article  ADS  Google Scholar 

  15. I. Burns, N. Lamoureux, C. Kaminski, J. Hult, P. Desgroux, Appl. Phys. B 93, 907 (2008)

    Article  ADS  Google Scholar 

  16. R. Whiddon, B. Zhou, J. Borggren, M. Aldén, Z. Li, Rev. Sci. Instrum. 86, 093107 (2015)

    Article  ADS  Google Scholar 

  17. C.A. Taatjes, N. Hansen, A. McIlroy, J.A. Miller, J.P. Senosiain, S.J. Klippenstein et al., Science 308, 1887 (2005)

    Article  ADS  Google Scholar 

  18. Z.S. Li, C. Hu, J. Zetterberg, M. Linvin, M. Aldén, J. Chem. Phys. 127, 084310 (2007)

    Article  ADS  Google Scholar 

  19. Z.S. Li, M. Linvin, J. Zetterberg, J. Kiefer, M. Aldén, Proc. Combust. Inst. 31, 817 (2007)

    Article  Google Scholar 

  20. J.E. Dec, J.O. Keller, Symp. Combust. 21, 1737 (1988)

    Article  Google Scholar 

  21. P.R. Medwell, Q.N. Chan, P.A.M. Kalt, Z.T. Alwahabi, B.B. Dally, G.J. Nathan, Appl. Opt. 48, 1237 (2009)

    Article  ADS  Google Scholar 

  22. I.S. Burns, J. Hult, G. Hartung, C.F. Kaminski, Proc. Combust. Inst. 31, 775 (2007)

    Article  Google Scholar 

  23. Z.S. Li, M. Rupinski, J. Zetterberg, Z.T. Alwahabi, M. Aldén, Chem. Phys. Lett. 407, 243 (2005)

    Article  ADS  Google Scholar 

  24. G.V. Deverall, K.W. Meissner, G.J. Zissis, Phys. Rev. 91, 297 (1953)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Swedish Energy Agency, Swedish Research Council (VR), Knut & Alice Wallenberg Foundation and European Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper Borggren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borggren, J., Burns, I.S., Sahlberg, AL. et al. Temperature imaging in low-pressure flames using diode laser two-line atomic fluorescence employing a novel indium seeding technique. Appl. Phys. B 122, 58 (2016). https://doi.org/10.1007/s00340-016-6329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6329-8

Keywords

Navigation