Skip to main content
Log in

Generation of visible wavelength by the phase-matching four-wave mixing in an Yb-doped V-shape photonic crystal fiber

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, an Ytterbium-doped V-shape photonic crystal fiber (Yb-VPCF) with low dispersion and high nonlinearity is designed and fabricated in our laboratory. Through coupling femtosecond pulses into the fundamental mode of Yb-VPCF, the tunable anti-Stokes signals at the visible wavelength are efficiently generated based on the phase-matching four-wave mixing. When the pump wavelength is changed from 810, to 820, and to 830 nm and the input average power is increased from 0.4, to 0.5, and to 0.6 W, respectively, the anti-Stokes signals are generated within the wavelength range of 562–477 nm. The wavelength-tunable range is over 100 nm, and the maximum power ratio of anti-Stokes signal at 477 nm and the residual pump at 830 nm can be up to 23.9:1. The anti-Stokes signals generated can be used as the ultrashort pulse sources for ultrafast optoelectronics and spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.St.J. Russell, Science 299, 358 (2003)

    Article  ADS  Google Scholar 

  2. J.C. Knight, Nature 424, 847 (2003)

    Article  ADS  Google Scholar 

  3. P.St.J. Russell, J. Lightwave Technol. 24, 4729 (2006)

    Article  ADS  Google Scholar 

  4. N. Nishizawa, T. Goto, IEEE J. Sel. Top. Quantum Electron. 7, 518 (2001)

    Article  Google Scholar 

  5. K. Saitoh, M. Koshiba, Opt. Express 12, 2027 (2004)

    Article  ADS  Google Scholar 

  6. A.B. Fedotov, E.E. Serebryannikov, A.A. Ivanov, L.A. Mel’nikov, A.V. Shcherbakov, D.A. Sidorov-Biryukov, ChK Sun, M.V. Alfimov, A.M. Zheltikov, Laser Phys. Lett. 3, 301 (2006)

    Article  ADS  Google Scholar 

  7. X.Z. Sang, P.K. Chu, C.X. Yu, Opt. Quantum Electron. 37, 965 (2005)

    Article  Google Scholar 

  8. A.M. Zheltikov, J. Opt. A: Pure Appl. Opt. 8, S47 (2006)

    Article  ADS  Google Scholar 

  9. W. Astar, C.-C. Wei, Y.-J. Chen, J. Chen, G.M. Carter, Opt. Express 16, 12039 (2008)

    Article  ADS  Google Scholar 

  10. K.K. Chow, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, Opt. Express 15, 15418 (2007)

    Article  ADS  Google Scholar 

  11. J.H. Lee, K.Y. Song, H.J. Yoon, J.S. Kim, T. Hasegawa, T. Nagashima, S. Ohara, N. Sugimoto, Opt. Lett. 34, 2670 (2009)

    Article  ADS  Google Scholar 

  12. J. Hu, C.R. Menyuk, L.B. Shaw, J.S. Sanghera, I.D. Aggarwal, Opt. Commun. 293, 116 (2013)

    Article  ADS  Google Scholar 

  13. B. Dabas, J. Kaushal, M. Rajput, R.K. Sinha, Appl. Opt. 50, 5803 (2011)

    Article  ADS  Google Scholar 

  14. K.M. Kiang, K. Frampton, T.M. Monro, R. Moore, J. Tucknott, D.W. Hewak, D.J. Richardson, H.N. Rutt, Electron. Lett. 38, 546 (2002)

    Article  Google Scholar 

  15. A.H. Zewail, Science 242, 1645 (1988)

    Article  ADS  Google Scholar 

  16. E.R. Andresen, H.N. Paulsen, V. Birkedal, J. Thogersen, S.R. Keiding, J. Opt. Soc. Am. B 22, 1934 (2005)

    Article  ADS  Google Scholar 

  17. X.W. Shen, C.X. Yu, X.Z. Sang, J.H. Yuan, Y. Han, C.M. Xia, L.T. Hou, F. Rao, M. Xia, X.L. Yin, Acta Phys. Sin. 61, 044203 (2012)

    Google Scholar 

  18. J.H. Yuan, X.Z. Sang, C.X. Yu, Y. Han, G.Y. Zhou, S.G. Li, L.T. Hou, J. Lightwave Technol. 29, 2920 (2011)

    Article  ADS  Google Scholar 

  19. J.H. Yuan, X.Z. Sang, C.X. Yu, S.G. Li, G.Y. Zhou, L.T. Hou, IEEE J. Quantum Electron. 46, 728 (2010)

    Article  ADS  Google Scholar 

  20. J.H. Yuan, X.Z. Sang, C.X. Yu, X.J. Xin, G.Y. Zhou, S.G. Li, L.T. Hou, Appl. Phys. B 104, 117 (2011)

    Article  ADS  Google Scholar 

  21. H.L. Wang, Y.X. Leng, Z.Z. Xu, Y.H. Qi, Chin. Phys. Lett. 26, 084201 (2009)

    Article  ADS  Google Scholar 

  22. W. Wang, L.T. Hou, Z.L. Liu, G.Y. Zhou, Chin. Phys. Lett. 25, 3682 (2008)

    Article  ADS  Google Scholar 

  23. K. Inoue, H. Toba, IEEE Photon. Technol. Lett. 4, 69 (1992)

    Article  ADS  Google Scholar 

  24. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001)

    Google Scholar 

  25. A.V. Husakou, J. Herrmann, Appl. Phys. Lett. 83, 3867 (2003)

    Article  ADS  Google Scholar 

  26. J.H. Yuan, X.Z. Sang, Q. Wu, G.Y. Zhou, C.X. Yu, K.R. Wang, B.B. Yan, Y. Han, G. Farrell, L.T. Hou, Opt. Lett. 38, 5288 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is partly supported by the National Natural Science Foundation of China (61307109 and 61475023), the Beijing Natural Science Foundation (4152037), the Specialized Research Fund for the Doctoral Program of Higher Education (20120005120021), the Fundamental Research Funds for the Central Universities (2013RC1202), the Fund of State Key Laboratory of Information Photonics and Optical Communications (BUPT) of China, the Hong Kong Scholars Program 2013 (PolyU G-YZ45), and the Research Grant Council of the Hong Kong Special Administrative Region China (PolyU5272/12E).

Conflict of interest

We have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhui Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Yuan, J., Sang, X. et al. Generation of visible wavelength by the phase-matching four-wave mixing in an Yb-doped V-shape photonic crystal fiber. Appl. Phys. B 120, 117–122 (2015). https://doi.org/10.1007/s00340-015-6110-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6110-4

Keywords

Navigation