Skip to main content
Log in

Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A low-power mobile sensing platform has been developed with multiple open-path gas sensors to measure the ambient concentrations of greenhouse gases and air pollutants with high temporal and spatial resolutions over extensive spatial domains. The sensing system consists of four trace gas sensors including two custom quantum cascade laser-based open-path sensors and two LICOR open-path sensors to measure CO2, CO, CH4, N2O, NH3, and H2O mixing ratios simultaneously at 10 Hz. In addition, sensors for meteorological and geolocation data are incorporated into the system. The system is powered by car batteries with a low total power consumption (~200 W) and is easily transportable due to its low total mass (35 kg). Multiple measures have been taken to ensure robust performance of the custom, open-path sensors located on top of the vehicle where the optics are exposed to the harsh on-road environment. The mobile sensing system has been integrated and installed on top of common passenger vehicles and participated in extensive field campaigns (>400 h on-road time with >18,000 km total distance) in both the USA and China. The simultaneous detection of multiple trace gas species makes the mobile sensing platform a unique and powerful tool to identify and quantify different emission sources through mobile mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H.L. Brantley, G.S.W. Hagler, E.S. Kimbrough, R.W. Williams, S. Mukerjee, L.M. Neas, Mobile air monitoring data-processing strategies and effects on spatial air pollution trends. Atmos. Meas. Tech 7(7), 2169–2183 (2014)

    Article  Google Scholar 

  2. M. Zavala, S.C. Herndon, R.S. Slott, E.J. Dunlea, L.C. Marr, J.H. Shorter, M. Zahniser, W.B. Knighton, T.M. Rogers, C.E. Kolb, L.T. Molina, M.J. Molina, Characterization of on-road vehicle emissions in the Mexico City Metropolitan Area using a mobile laboratory in chase and fleet average measurement modes during the MCMA-2003 field campaign. Atmos. Chem. Phys. 6(3), 4689–4725 (2006)

    Article  Google Scholar 

  3. C.E. Kolb, S.C. Herndon, J.B. McManus, J.H. Shorter, M.S. Zahniser, D.D. Nelson, J.T. Jayne, M.R. Canagaratna, D.R. Worsnop, Mobile laboratory with rapid response instruments for real-time measurements of urban and regional trace gas and particulate distributions and emission source characteristics. Environ. Sci. Technol. 38(21), 5694–5703 (2004)

    Article  ADS  Google Scholar 

  4. S.C. Herndon, J.T. Jayne, M.S. Zahniser, D.R. Worsnop, B. Knighton, E. Alwine, B.K. Lamb, M. Zavala, D.D. Nelson, J.B. McManus, J.H. Shorter, M.R. Canagaratna, T.B. Onasch, C.E. Kolb, Characterization of urban pollutant emission fluxes and ambient concentration distributions using a mobile laboratory with rapid response instrumentation. Faraday Discuss. 130, 327 (2005)

    Article  ADS  Google Scholar 

  5. M. Wang, T. Zhu, J. Zheng, R.Y. Zhang, S.Q. Zhang, X.X. Xie, Y.Q. Han, Y. Li, Use of a mobile laboratory to evaluate changes in on-road air pollutants during the Beijing 2008 Summer Olympics. Atmos. Chem. Phys. 9(3), 12857–12898 (2009)

    Article  Google Scholar 

  6. P. Farrell, D. Culling, I. Leifer, Transcontinental methane measurements. Part 1. A mobile surface platform for source investigations. Atmos. Environ. 74, 422–431 (2013)

    Article  ADS  Google Scholar 

  7. L.T. Padró-Martínez, A.P. Patton, J.B. Trull, W. Zamore, D. Brugge, J.L. Durant, Mobile monitoring of particle number concentration and other traffic-related air pollutants in a near-highway neighborhood over the course of a year. Atmos. Environ. 1994(61), 253–264 (2012)

    Article  ADS  Google Scholar 

  8. N. Bukowiecki, J. Dommen, A.S.H. Prévôt, R. Richter, E. Weingartner, U. Baltensperger, A mobile pollutant measurement laboratory—measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution. Atmos. Environ. 36(36–37), 5569–5579 (2002)

    Article  ADS  Google Scholar 

  9. F. Drewnick, T. Böttger, S.-L. von der Weiden-Reinmüller, S.R. Zorn, T. Klimach, J. Schneider, S. Borrmann, Design of a mobile aerosol research laboratory and data processing tools for effective stationary and mobile field measurements. Atmos. Meas. Tech 5(6), 1443–1457 (2012)

    Article  Google Scholar 

  10. P. Werle, Diode-Laser sensors for in situ gas analysis, in Laser in environmental and life sciences modern analytical methods, ed. by P. Hering, J.P. Lay, S. Stry (Springer, Berlin, 2004), pp. 223–243

    Chapter  Google Scholar 

  11. M.A. Zondlo, M.E. Paige, S.M. Massick, J.A. Silver, Vertical cavity laser hygrometer for the National Science Foundation Gulfstream-V aircraft. J. Geophys. Res. 115(D20), D20309 (2010)

    Article  ADS  Google Scholar 

  12. A. Khan, D. Schaefer, L. Tao, D.J. Miller, K. Sun, M.A. Zondlo, W.A. Harrison, B. Roscoe, D.J. Lary, Low power Greenhouse gas sensors for unmanned Aerial Vehicles. Remote Sens 4(12), 1355–1368 (2012)

    Article  ADS  Google Scholar 

  13. L. Tao, K. Sun, M.A. Khan, D.J. Miller, M.A. Zondlo, Compact and portable open-path sensor for simultaneous measurements of atmospheric N2O and CO using a quantum cascade laser. Opt. Express 20(27), 28106–28118 (2012)

    Article  ADS  Google Scholar 

  14. D.J. Miller, K. Sun, L. Tao, M.A. Khan, M.A. Zondlo, Open-path, quantum cascade-laser-based sensor for high-resolution atmospheric ammonia measurements. Atmos. Meas. Tech 7(1), 81–93 (2014)

    Article  Google Scholar 

  15. K. Sun, L. Tao, D.J. Miller, M.A. Khan, M.A. Zondlo, On-road ammonia emissions characterized by mobile, open-path measurements. Environ. Sci. Technol. 48(7), 3943–3950 (2014)

    Article  ADS  Google Scholar 

  16. D.J. Miller, K. Sun, L. Tao, M.A. Zondlo, J.B. Nowak, Z. Liu, G. Diskin, G. Sachse, A. Beyersdorf, R. Ferrare, A.J. Scarino, Ammonia and methane dairy emission plumes in the San Joaquin Valley of California from individual feedlot to regional scales, to be submitted to J. Geophys. Res. Atmos. manuscript ID 2015JD023241 (2015)

  17. D. McDermitt, G. Burba, L. Xu, T. Anderson, A. Komissarov, B. Riensche, J. Schedlbauer, G. Starr, D. Zona, W. Oechel, S. Oberbauer, S. Hastings, A new low-power, open-path instrument for measuring methane flux by eddy covariance. Appl. Phys. B 102(2), 391–405 (2010)

    Article  ADS  Google Scholar 

  18. LI-COR Biosceiences. LI-7500A Open Path CO2/H2O analyzer brochure, (Dec., 2014). Retrieved from http://www.licor.com/env/pdf/gas_analyzers/7500A/LI-7500A_brochure.pdf

  19. J.M. Supplee, E.A. Whittaker, W. Lenth, Theoretical description of frequency-modulation and wavelength modulation spectroscopy. Appl. Opt. 33(27), 6294–6302 (1994)

    Article  ADS  Google Scholar 

  20. D. Belušić, D.H. Lenschow, N.J. Tapper, Performance of a mobile car platform for mean wind and turbulence measurements. Atmos. Meas. Tech 7(6), 1825–1837 (2014)

    Article  Google Scholar 

  21. D. Herriott, H. Kogelnik, R. Kompfner, Off-Axis Paths in Spherical Mirror Interferometers. Appl. Opt. 3(4), 523 (1964)

    Article  ADS  Google Scholar 

  22. J.A. Silver, Simple dense-pattern optical multipass cells. Appl. Opt. 44(31), 6545 (2005)

    Article  ADS  Google Scholar 

  23. J.B. Mcmanus, mirror resonators with twisted axes for laser spectroscopy. Appl. Opt. 46(4), 472–482 (2007)

    Article  ADS  Google Scholar 

  24. D.-Y. Song, R.W. Sprague, H.A. Macleod, M.R. Jacobson, Progress in the development of a durable silver-based high-reflectance coating for astronomical telescopes. Appl. Opt. 24(8), 1164 (1985)

    Article  ADS  Google Scholar 

  25. D.W. Rice, Atmospheric corrosion of Copper and Silver. J. Electrochem. Soc. 128(2), 275 (1981)

    Article  Google Scholar 

  26. K. Sun, L. Tao, D.J. Miller, M.A. Khan, M.A. Zondlo, Inline multi-harmonic calibration method for open-path atmospheric ammonia measurements. Appl. Phys. B 110(2), 213–222 (2012)

    Article  ADS  Google Scholar 

  27. J.B. Nowak, J.A. Neuman, K. Kozai, L.G. Huey, D.J. Tanner, J.S. Holloway, T.B. Ryerson, G.J. Frost, S.A. McKeen, F.C. Fehsenfeld, A chemical ionization mass spectrometry technique for airborne measurements of ammonia. J. Geophys. Res. 112(D10), D10S02 (2007)

    ADS  Google Scholar 

  28. Y. Minamoto, Flowsquare 3.1b [Computer software], (Mar., 2014). Retrieved from http://flowsquare.com/

  29. G.I. Taylor, The spectrum of turbulence. Proc. R. Soc. A Math. Phys Eng. Sci 164(919), 476–490 (1938)

    Article  ADS  Google Scholar 

  30. G.E. Willis, J.W. Deardorff, On the use of Taylor’s translation hypothesis for diffusion in the mixed layer. Q. J. R. Meteorol. Soc. 102(434), 817–822 (1976)

    Article  ADS  Google Scholar 

  31. NASA, DISCOVER-AQ Mission, (Dec., 2014). Retrieved from http://www.nasa.gov/mission_pages/discover-aq/#.VE8lSmca9Es

Download references

Acknowledgments

The authors acknowledge the following people associated with the mobile platform development and deployment including James Smith, Claire Gmachl, Elie Bou-Zeid, and Denise Mauzerall at Princeton University, Tong Zhu at Peking University, Barry Lefer at University of Houston, Robert Griffin at Rice University, Jim Crawford at NASA Langley Research Center, the NASA DISCOVER-AQ science team, Andrew Neuman and Thomas Ryerson at NOAA ESRL Chemical Sciences Division for calibrations with their NH3 permeation source, Dayle McDermitt from LICOR Biosceiences, and Yan Zhang from Scinovation. The research is supported by Princeton University, the National Geographic Air and Water Conservation Fund, NSF Center for Mid-Infrared Technologies for Health and the Environment (MIRTHE, NSF-ERC) under Grant No. EEC-0540832. Special thanks to the support and helpful discussions with LI-COR Environmental division and for providing a set of LICOR sensors for the mobile laboratory. K. Sun acknowledges support by NASA Earth and Space Science Fellowship (NN12AN64H). D. J. Miller acknowledges support by the National Science Foundation Graduate Research Fellowship (DGE-0646086). We thank two anonymous reviewers for very helpful feedback and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Tao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, L., Sun, K., Miller, D.J. et al. Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants. Appl. Phys. B 119, 153–164 (2015). https://doi.org/10.1007/s00340-015-6069-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6069-1

Keywords

Navigation